Curve complexes versus Tits buildings: structures and applications

[1]  Bruna Tanaka Cremonini,et al.  Buildings , 1995, Data, Statistics, and Useful Numbers for Environmental Sustainability.

[2]  J. Ratcliffe Foundations of Hyperbolic Manifolds , 2019, Graduate Texts in Mathematics.

[3]  F. Grunewald Connectivity of complexes of separating curves , 2013 .

[4]  G. Prasad,et al.  Arithmetic Groups , 2022 .

[5]  Piotr W. Nowak,et al.  Large Scale Geometry , 2012 .

[6]  A. Papadopoulos,et al.  Kerckhoff’s lines of minima in Teichmüller space , 2011 .

[7]  N. Broaddus Homology of the curve complex and the Steinberg module of the mapping class group , 2007, 0711.0011.

[8]  L. Ji Simplicial volume of moduli spaces of Riemann surfaces , 2012 .

[9]  Vaibhav Gadre,et al.  Minimal pseudo-Anosov translation lengths on the complex of curves , 2011, 1101.2692.

[10]  Y. Kida Automorphisms of the Torelli complex and the complex of separating curves , 2009, 0909.4718.

[11]  B. Rémy,et al.  Bruhat–Tits theory from Berkovich's point of view. II Satake compactifications of buildings , 2009, Journal of the Institute of Mathematics of Jussieu.

[12]  Jan Essert,et al.  Buildings, Group Homology and Lattices , 2010, 1008.4908.

[13]  S. Yau,et al.  Arithmetic groups, mapping class groups, related groups, and their associated spaces , 2010 .

[14]  R. Canary Marden's Tameness Conjecture: history and applications , 2010, 1008.0118.

[15]  K. Fujiwara,et al.  The asymptotic dimension of mapping class groups is finite , 2010 .

[16]  Ryosuke Yamamoto,et al.  COMPLEXITY OF OPEN BOOK DECOMPOSITIONS VIA ARC COMPLEX , 2010 .

[17]  M. Rathbun,et al.  HIGH DISTANCE KNOTS IN CLOSED 3-MANIFOLDS , 2009, 0911.3675.

[18]  A. Papadopoulos,et al.  On the arc and curve complex of a surface , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Amaury Thuillier,et al.  Bruhat-Tits Theory from Berkovich's Point of View. I - Realizations and Compactifications of Buildings , 2009, 0903.1245.

[20]  A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry , 2009, 0903.0584.

[21]  M. Lustig,et al.  Geometric Intersection Number and analogues of the Curve Complex for free groups , 2007, 0711.3806.

[22]  Mahan Mj Cannon–Thurston maps for pared manifolds of bounded geometry , 2005, math/0503581.

[23]  Mapping class groups and interpolating complexes: rank , 2009 .

[24]  L. Ji From symmetric spaces to buildings, curve complexes and outer spaces , 2009 .

[25]  S. Wolpert,et al.  A cofinite universal space for proper actions for mapping class groups , 2008, 0811.3871.

[26]  Michael W. Davis Examples of buildings constructed via covering spaces , 2008, 0809.5097.

[27]  H. Masur,et al.  Teichmuller geometry of moduli space, II: M(S) seen from far away , 2008, 0807.1876.

[28]  S. Yau,et al.  Large scale geometry, compactifications and the integral Novikov conjectures for arithmetic groups , 2008 .

[29]  Jeffrey F. Brock,et al.  Asymptotics of Weil–Petersson Geodesics I: Ending Laminations, Recurrence, and Flows , 2008, 0802.1370.

[30]  Joseph Maher Linear progress in the complex of curves , 2008, 0802.0467.

[31]  Brian H. Bowditch,et al.  Tight geodesics in the curve complex , 2008 .

[32]  Jason A. Behrstock,et al.  Geometry and rigidity of mapping class groups , 2008, 0801.2006.

[33]  E. Leuzinger Reduction theory for mapping class groups and applications to moduli spaces , 2008, 0801.1589.

[34]  Andrew Putman A note on the connectivity of certain complexes associated to surfaces , 2006, math/0612762.

[35]  Koji Fujiwara,et al.  The asymptotic dimension of a curve graph is finite , 2005, math/0509216.

[36]  Peter Abramenko,et al.  Buildings: Theory and Applications , 2008 .

[37]  Michael Davis,et al.  The geometry and topology of Coxeter groups , 2008 .

[38]  Ross Geoghegan,et al.  Topological methods in group theory , 2007 .

[39]  L. Ji The integral Novikov conjectures for S-arithmetic groups i , 2007 .

[40]  Saul Schleimer,et al.  CURVE COMPLEXES ARE RIGID , 2007, 0710.3794.

[41]  C. Loeh,et al.  Degree theorems and Lipschitz simplicial volume for nonpositively curved manifolds of finite volume , 2007, 0710.1635.

[42]  N. V. Ivanov,et al.  Infinite topology of curve complexes and non-Poincare duality of Teichmueller modular groups , 2007, 0707.4322.

[43]  B. Szepietowski A presentation for the mapping class group of a non-orientable surface from the action on the complex of curves , 2007, 0707.2776.

[44]  Simplicial volume of Hilbert modular varieties , 2007, 0706.3904.

[45]  Simplicial volume of locally symmetric spaces covered by $${\rm SL}_{3}{\mathbb{R}}/{\rm SO}(3)$$ , 2007 .

[46]  Mahan Mj Mapping Class Groups and Interpolating Complexes: Rank , 2007, 0706.2740.

[47]  P. Lochak,et al.  Profinite complexes of curves, their automorphisms and anabelian properties of moduli stacks of curves , 2007, 0706.0859.

[48]  A. Marden Deformations of Kleinian groups , 2007 .

[49]  Maggy Tomova Distance of Heegaard splittings of knot complements , 2007, math/0703474.

[50]  Covers and curve complex , 2007, math/0701719.

[51]  Tao Li Saddle tangencies and the distance of Heegaard splittings , 2007, math/0701396.

[52]  U. Hamenstaedt Geometry of the complex of curves and of Teichmüller space , 2005, math/0502256.

[53]  Albert Marden,et al.  Outer Circles: An Introduction to Hyperbolic 3-Manifolds , 2007 .

[54]  L. Ji Integral Novikov conjectures and Arithmetic groups containing torsion elements , 2007 .

[55]  A. Werner Compactifications of Bruhat‐Tits buildings associated to linear representations , 2006, math/0609843.

[56]  C. Leininger,et al.  The lower central series and pseudo-Anosov dilatations , 2006, math/0603675.

[57]  Jesse Johnson Bridge Number and the Curve Complex , 2006, math/0603102.

[58]  Jesse Johnson Heegaard splittings and the pants complex , 2005, math/0509680.

[59]  Jason A. Behrstock Asymptotic Geometry of the Mapping Class Group and Teichmuller Space , 2005, math/0502367.

[60]  Maggy Tomova,et al.  Alternate Heegaard genus bounds distance , 2005, math/0501140.

[61]  Simplicial volume of locally symmetric spaces covered by SL3R/SO(3) , 2006 .

[62]  M Ronan From Galois and Lie to Tits buildings , 2006 .

[63]  Large scale geometry , compactifications and the integral Novikov conjectures for arithmetic groups , 2006 .

[64]  Brian H. Bowditch,et al.  Intersection numbers and the hyperbolicity of the curve complex , 2006 .

[65]  Y. Minsky Curve complexes, surfaces and 3-manifolds , 2006 .

[66]  L. Ji Buildings and their Applications in Geometry and Topology , 2006 .

[67]  Ursula Hamenstaedt,et al.  Geometry of the mapping class groups III: Quasi-isometric rigidity , 2005, math/0512429.

[68]  Jason A. Behrstock,et al.  Dimension and rank for mapping class groups , 2005, math/0512352.

[69]  Y. Kida The Mapping Class Group from the Viewpoint of Measure Equivalence Theory , 2005, math/0512230.

[70]  Geometry of the mapping class groups II: Subsurfaces , 2005 .

[71]  Ursula Hamenstädt,et al.  Geometry of the mapping class groups I: Boundary amenability , 2005, math/0510116.

[72]  Kasra Rafi A Combinatorial Model for the Teichmüller Metric , 2005, math/0509584.

[73]  Y. D. Kim The thurston boundary of teichmuller space and complex of curves , 2005, math/0506031.

[74]  J.-F. Lafont,et al.  Simplical volume of closed locally symmetric spaces of non-compact type , 2005, math/0504338.

[75]  Y. Guivarc'h,et al.  Group-theoretic compactification of Bruhat-Tits buildings , 2005, math/0504291.

[76]  Jocelyne Bédard,et al.  New-York, 1985 , 2005 .

[77]  K. Shackleton COMBINATORIAL RIGIDITY IN CURVE COMPLEXES AND MAPPING CLASS GROUPS , 2005, math/0503199.

[78]  U. Hamenstaedt Train tracks and the geometry of the complex of curves , 2005 .

[79]  D. Margalit,et al.  Injections of Artin groups , 2005, math/0501051.

[80]  W. Lueck Survey on Classifying Spaces for Families of Subgroups , 2003, math/0312378.

[81]  Lizhen Ji,et al.  Compactifications of Symmetric and Locally Symmetric Spaces , 2005 .

[82]  Yair N. Minsky,et al.  THE CLASSIFICATION OF KLEINIAN SURFACE GROUPS, II: THE ENDING LAMINATION CONJECTURE , 2004, math/0412006.

[83]  M. Scharlemann Proximity in the curve complex: boundary reduction and bicompressible surfaces , 2004, math/0410278.

[84]  U. Hamenstaedt Spaces of Kleinian Groups: Train tracks and the Gromov boundary of the complex of curves , 2004, math/0409611.

[85]  Benoît Grébert,et al.  KdV & KAM ergebnisse der mathematik und ihrer grenzgebiete 3 , 2004 .

[86]  Toshio Saito Genus one 1-bridge knots as viewed from the curve complex , 2004 .

[87]  Dan Margalit,et al.  Automorphisms of the pants complex , 2004 .

[88]  R. Canary,et al.  Homotopy equivalences of 3-manifolds and deformation theory of Kleinian groups , 2004 .

[89]  Brian H. Bowditch,et al.  Length Bounds on Curves Arising from Tight Geodesics , 2007 .

[90]  S. Wolpert Geometry of the Weil-Petersson completion of Teichm\ , 2005, math/0502528.

[91]  N. V. Ivanov,et al.  The Torelli geometry and its applications , 2003, math/0311123.

[92]  H. Masur,et al.  Quasiconvexity in the curve complex , 2003, math/0307083.

[93]  Mathématiques DE L’I.H.É.S,et al.  Volume and bounded cohomology , 2003 .

[94]  W. Harvey Remarks on the curve complex: classification of surface homeomorphisms , 2003 .

[95]  Y. Minsky Kleinian Groups and Hyperbolic 3-Manifolds: Combinatorial and geometrical aspects of hyperbolic 3-manifolds , 2003 .

[96]  Y. Minsky The classification of Kleinian surface groups I : Models and bounds : preprint , 2003, math/0302208.

[97]  E. Leuzinger Tits Geometry, Arithmetic Groups, and the Proof of a Conjecture of Siegel , 2002, math/0211340.

[98]  Elmas Irmak Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups , 2002, math/0211139.

[99]  A. Werner Compactification of the Bruhat-Tits building of PGL by seminorms , 2002, math/0209116.

[100]  Y. Minsky Combinatorial and Geometrical Aspects of Hyperbolic 3-Manifolds , 2002, math/0205173.

[101]  K. Hartshorn Heegaard splittings of Haken manifolds have bounded distance , 2002 .

[102]  Ilya Kapovich,et al.  Boundaries of hyperbolic groups , 2002, math/0202286.

[103]  Y. Minsky End invariants and the classification of hyperbolic 3-manifolds , 2002 .

[104]  R. Macpherson,et al.  Geometry of compactifications of locally symmetric spaces , 2002 .

[105]  F. Paulin,et al.  Sur les immeubles hyperboliques (On hyperbolic buildings) , 2001 .

[106]  Jeffrey F. Brock The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores , 2001 .

[107]  J. B. Brock,et al.  Curvature and rank of Teichmüller space , 2001, math/0109045.

[108]  Graham A. Niblo METRIC SPACES OF NON‐POSITIVE CURVATURE (Grundlehren der Mathematischen Wissenschaften 319) , 2001 .

[109]  藤原 耕二 Bounded cohomology of subgroups of mapping class groups (双曲空間及び離散群の研究 研究集会報告集) , 2001 .

[110]  A. Werner Compactification of the Bruhat-Tits building of PGL by lattices of smaller rank , 2001, math/0104032.

[111]  Silvia Benvenuti Finite presentations for the mapping class group via the ordered complex of curves , 2001 .

[112]  R. Boyle 1641 , 2001, The Correspondence of Robert Boyle, Vol. 1: 1636–61: Introduction.

[113]  N. V. Ivanov Isometries of Teichm?uller spaces from the point of view of Mostow rigidity , 2001 .

[114]  Nikolai V. Ivanov,et al.  Mapping Class Groups , 2001 .

[115]  Susumu Hirose A complex of curves and a presentation for the mapping class group of a surface , 2000, math/0008185.

[116]  H. Masur,et al.  The Weil–Petersson Isometry Group , 2000, math/0008065.

[117]  A. Werner Non-archimedean intersection indices on projective spaces and the Bruhat-Tits building for $PGL$ , 2000, math/0004029.

[118]  M. Bourdon Sur les immeubles fuchsiens et leur type de quasi-isométrie , 2000, Ergodic Theory and Dynamical Systems.

[119]  A. Moy Displacement functions on the Bruhat–Tits building , 2000 .

[120]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[121]  Mustafa Korkmaz,et al.  Automorphisms of complexes of curves on punctured spheres and on punctured tori , 1999 .

[122]  L. Paris Actions and irreducible representations of the mapping class group , 1999, math/9905182.

[123]  Feng Luo,et al.  Automorphisms of the complex of curves , 1999, math/9904020.

[124]  Yair N. Minsky,et al.  Geometry of the complex of curves I: Hyperbolicity , 1998, math/9804098.

[125]  A. Hatcher,et al.  The Complex of Free Factors of a Free Group , 1998, 2203.15602.

[126]  H. Masur,et al.  Geometry of the complex of curves II: Hierarchical structure , 1998, math/9807150.

[127]  Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces , 1998 .

[128]  John Hempel,et al.  3-Manifolds as viewed from the curve complex ☆ , 1997, math/9712220.

[129]  B. Kleiner,et al.  Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings , 1997 .

[130]  The quasi-isometry classification of lattices in semisimple Lie groups , 1997 .

[131]  Nikolai V. Ivanov,et al.  Automorphism of complexes of curves and of Teichmuller spaces : Interna , 1997 .

[132]  A. Eskin,et al.  Quasi-flats and rigidity in higher rank symmetric spaces , 1997 .

[133]  T. Hattori Asymptotic geometry of arithmetic quotients of symmetric spaces , 1996 .

[134]  Quasi-isometric rigidity and diophantine approximation , 1996 .

[135]  Nikolai V. Ivanov,et al.  Action of Möbius transformations on homeomorphisms: Stability and rigidity , 1996 .

[136]  Benson Farb,et al.  The large-scale geometry of Hilbert modular groups , 1996 .

[137]  P. Abramenko Twin buildings and applications to S-arithmetic groups , 1996 .

[138]  E. Landvogt A Compactification of the Bruhat-Tits Building , 1995 .

[139]  Gérard Besson,et al.  Entropies et rigidités des espaces localement symétriques de courbure strictement négative , 1995 .

[140]  R. Schwartz The quasi-isometry classification of rank one lattices , 1995 .

[141]  P. Harrigan 326 , 1994, The Lancet.

[142]  Lizhen Ji,et al.  Compactifications of Symmetric Spaces , 1998 .

[143]  Brian H. Bowditch,et al.  Geometrical Finiteness for Hyperbolic Groups , 1993 .

[144]  R. Canary Ends of hyperbolic 3-manifolds , 1993 .

[145]  E. Primrose,et al.  Subgroups of Teichmuller Modular Groups , 1992 .

[146]  R. Benedetti,et al.  Lectures on Hyperbolic Geometry , 1992 .

[147]  W. Harvey Discrete Groups and Geometry: Modular groups – geometry and physics , 1992 .

[148]  P. Buser,et al.  Geometry and Spectra of Compact Riemann Surfaces , 1992 .

[149]  J. Harer,et al.  Combinatorics of Train Tracks. , 1991 .

[150]  Gregory Margulis,et al.  Discrete Subgroups of Semisimple Lie Groups , 1991 .

[151]  Martin R. Bridson,et al.  Geodesics and curvature in metric simplicial complexes , 1991 .

[152]  M. Gromov,et al.  Rigidity of lattices: An introduction , 1991 .

[153]  A rigidity theorem for Möbius groups , 1989 .

[154]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[155]  John Harer,et al.  The cohomology of the moduli space of curves , 1988 .

[156]  K. Burns,et al.  On topological tits buildings and their classification , 1987 .

[157]  K. Burns,et al.  Manifolds of nonpositive curvature and their buildings , 1987 .

[158]  M. A. Ronan,et al.  Building buildings , 1987 .

[159]  Francis Bonahon Bouts des Varietes Hyperboliques de Dimension 3 , 1986 .

[160]  J. Harer The virtual cohomological dimension of the mapping class group of an orientable surface , 1986 .

[161]  W. Ballmann Nonpositively curved manifolds of higher rank , 1985 .

[162]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[163]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[164]  Meinolf Geck,et al.  Finite groups of Lie type , 1985 .

[165]  Alexander Lubotzky,et al.  Abelian and solvable subgroups of the mapping class groups , 1983 .

[166]  B. Wajnryb A simple presentation for the mapping class group of an orientable surface , 1983 .

[167]  Kenneth S. Brown,et al.  Cohomology of Groups , 1982 .

[168]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[169]  W. J. Harvey,et al.  Boundary Structure of The Modular Group , 1981 .

[170]  W. Thurston,et al.  A presentation for the mapping class group of a closed orientable surface , 1980 .

[171]  W. Harvey Homological Group Theory: Geometric structure of surface mapping class groups , 1979 .

[172]  Jean-Pierre Serre,et al.  Cohomologie d'immeubles et de groupes s-arithmétiques , 1976 .

[173]  J. Tits,et al.  On buildings and their applications , 1975 .

[174]  Jacques Tits,et al.  Buildings of Spherical Type and Finite BN-Pairs , 1974 .

[175]  Albert Marden,et al.  The Geometry of Finitely Generated Kleinian Groups , 1974 .

[176]  L. Bers on Moduli of Kleinian Groups , 1974 .

[177]  G. Mostow Strong Rigidity of Locally Symmetric Spaces. , 1973 .

[178]  A. Borel,et al.  Corners and arithmetic groups , 1973 .

[179]  Gopal Prasad Strong rigidity ofQ-rank 1 lattices , 1973 .

[180]  H. Royden Automorphisms and Isometries of Teichmilller Space , 1971 .

[181]  B. Bowditch End invariants of hyperbolic 3-manifolds , 2022 .