Approximate solutions of generalized Riemann problems for nonlinear systems of hyperbolic conservation laws

We study analytical properties of the Toro-Titarev solver for generalized Riemann problems (GRPs), which is the heart of the flux computation in ADER generalized Godunov schemes. In particular, we compare the Toro-Titarev solver with a local asymptotic expansion developed by LeFloch and Raviart. We show that for scalar problems the Toro-Titarev solver reproduces the truncated Taylor series expansion of LeFloch-Raviart exactly, whereas for nonlinear systems the Toro-Titarev solver introduces an error whose size depends on the height of the jump in the initial data. Thereby, our analysis answers open questions concerning the justification of simplifying steps in the Toro-Titarev solver. We illustrate our results by giving the full analysis for a nonlinear 2-by-2 system and numerical results for shallow water equations.

[1]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[2]  V. P. Kolgan,et al.  Application of the principle of minimizing the derivative to the construction of finite-difference schemes for computing discontinuous solutions of gas dynamics , 2011, J. Comput. Phys..

[3]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[4]  Tatsien Li,et al.  Boundary value problems for quasilinear hyperbolic systems , 1985 .

[5]  I. S. Men'shov Increasing the order of approximation of Godunov's scheme using solutions of the generalized riemann problem , 1990 .

[6]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[7]  D. Kong Global structure stability of Riemann solutions of quasilinear hyperbolic systems of conservation laws: shocks and contact discontinuities , 2003 .

[8]  B. Temple Systems of conservation laws with invariant submanifolds , 1983 .

[9]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[10]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[11]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[12]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[13]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[14]  Li Ta-Tsien,et al.  A global asymptotic expansion for the solution to the generalized Riemann problem , 1991 .

[15]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[16]  J. Smoller,et al.  Shock Waves and Reaction-Diffusion Equations. , 1986 .

[17]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[18]  Eduard Harabetian,et al.  A convergent series expansion for hyperbolic systems of conservation laws , 1986 .

[19]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[20]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[21]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .

[22]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[23]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[24]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[25]  Eleuterio F. Toro,et al.  ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions , 2005 .

[26]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[27]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[28]  Eleuterio F. Toro,et al.  ADER finite volume schemes for nonlinear reaction--diffusion equations , 2009 .

[29]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[30]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[31]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[32]  Eleuterio F. Toro,et al.  Analysis of ADER and ADER-WAF schemes , 2006 .

[33]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[34]  Xiaosen Han,et al.  THE GENERALIZED RIEMANN PROBLEM FOR FIRST ORDER QUASILINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS I , 2009 .

[35]  Joseph Falcovitz,et al.  Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .

[36]  Tatsien Li,et al.  Global Propagation of Regular Nonlinear Hyperbolic Waves , 2002 .

[37]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[38]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[39]  Eleuterio F. Toro,et al.  TVD Fluxes for the High-Order ADER Schemes , 2005, J. Sci. Comput..

[40]  Xiaosen Han,et al.  The Generalized Riemann Problem for First Order Quasilinear Hyperbolic Systems of Conservation Laws II , 2009 .

[41]  Michel Rascle,et al.  Resurrection of "Second Order" Models of Traffic Flow , 2000, SIAM J. Appl. Math..

[42]  D. Kong Global structure instability of Riemann solutions of quasilinear hyperbolic systems of conservation laws: Rarefaction waves , 2005 .