Robust operation of fed batch fermenters

Abstract Optimisation of fed batch fermenters can substantially increase the profitability of these processes. Optimal control of a fed batch fermenter is usually based on a nominal process model. Parameter uncertainties are not taken into account. Simulation studies show that results obtained with fixed nominal model parameters can be quite sensitive to the uncertainty in parameter values. This paper presents a method for obtaining robust optimal control profiles in the presence of uncertainty in the model parameters. The proposed approach is illustrated with a case study. It is also shown that feedback controllers can reduce the effect of the uncertainties.

[1]  M. Kiehl,et al.  Sensitivity analysis of initial-value problems with application to shooting techniques , 1994 .

[2]  Masoud Soroush,et al.  Optimal design and operation of batch reactors. 1. Theoretical framework , 1993 .

[3]  Parisa A. Bahri,et al.  Operability assessment in chemical plants , 1996 .

[4]  John D. Perkins,et al.  Operability and Control in Process Synthesis and Design , 1996 .

[5]  Rein Luus,et al.  Evaluation of gradients for piecewise constant optimal control , 1991 .

[6]  E. Polak On the mathematical foundations of nondifferentiable optimization in engineering design , 1987 .

[7]  Rein Luus,et al.  Application of dynamic programming to differential-algebraic process systems , 1993 .

[8]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[9]  J Hong,et al.  Optimal substrate feeding policy for a fed batch fermentation with substrate and product inhibition kinetics , 1986, Biotechnology and bioengineering.

[10]  G Stephanopoulos,et al.  Optimization of fed‐batch penicillin fermentation: A case of singular optimal control with state constraints , 1989, Biotechnology and bioengineering.

[11]  L. Lasdon,et al.  Derivative evaluation and computational experience with large bilevel mathematical programs , 1990 .

[12]  L. Biegler,et al.  Stable Decomposition for Dynamic Optimization , 1995 .

[13]  Jeffery S. Logsdon,et al.  Decomposition strategies for large-scale dynamic optimization problems , 1992 .

[14]  J. A. Bandoni,et al.  Integrated flexibility and controllability analysis in design of chemical processes , 1997 .

[15]  Z Kurtanjek Optimal nonsingular control of fed‐batch fermentation , 1991, Biotechnology and bioengineering.

[16]  Ignacio E. Grossmann,et al.  Optimization strategies for flexible chemical processes , 1983 .

[17]  H C Lim,et al.  General characteristics of optimal feed rate profiles for various fed‐batch fermentation processes , 1986, Biotechnology and bioengineering.

[18]  B. Holt,et al.  An optimization approach to robust nonlinear control design , 1994 .

[19]  H C Lim,et al.  Simple nonsingular control approach to fed‐batch fermentation optimization , 1989, Biotechnology and bioengineering.

[20]  Robert Paul Byrne,et al.  Global optimisation in process design , 1997 .

[21]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[22]  Ignacio E. Grossmann,et al.  An index for operational flexibility in chemical process design. Part I: Formulation and theory , 1985 .

[23]  Oskar von Stryk,et al.  Direct and indirect methods for trajectory optimization , 1992, Ann. Oper. Res..

[24]  Paul H. Calamai,et al.  Bilevel and multilevel programming: A bibliography review , 1994, J. Glob. Optim..

[25]  Chyi Hwang,et al.  OPTIMAL CONTROL COMPUTATION FOR DIFFERENTIAL-ALGEBRAIC PROCESS SYSTEMS WITH GENERAL CONSTRAINTS , 1990 .

[26]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[27]  M. Morari,et al.  Robustness of MPC-Based Schemes for Constrained Control of Nonlinear Systems , 1996 .

[28]  John P. Barford,et al.  Non-singular optimal control for fed-batch fermentation processes with a differential-algebraic system model , 1993 .

[29]  Arthur W. Westerberg,et al.  Bilevel programming for steady-state chemical process design—I. Fundamentals and algorithms , 1990 .

[30]  Ignacio E. Grossmann,et al.  Optimal process design under uncertainty , 1983 .

[31]  O. A. Asbjornsen,et al.  Simultaneous optimization and solution of systems described by differential/algebraic equations , 1987 .

[32]  Efstratios N. Pistikopoulos,et al.  Optimal design of dynamic systems under uncertainty , 1996 .

[33]  C. Floudas,et al.  Active constraint strategy for flexibility analysis in chemical processes , 1987 .