Out-of-plane analysis of dry-stone walls using a pseudo-static experimental and numerical approach in natural-scale specimens

[1]  V. Sarhosis,et al.  Automatic image-based brick segmentation and crack detection of masonry walls using machine learning , 2022, Automation in Construction.

[2]  N. Tarque,et al.  Out-of-plane analysis of dry-stone walls using a pseudo-static experimental and numerical approach in scaled-down specimens , 2021 .

[3]  Vasilis Sarhosis,et al.  Employing non-contact sensing techniques for improving efficiency and automation in numerical modelling of existing masonry structures: A critical literature review , 2021 .

[4]  Elena Speranza,et al.  Upgraded formulations for the onset of local mechanisms in multi-storey masonry buildings using limit analysis , 2021, Structures.

[5]  C. Jakob,et al.  Yade Documentation , 2023, 2301.00611.

[6]  N. Savalle,et al.  Dynamic behaviour of drystone retaining walls: shaking table scaled-down tests , 2020, European Journal of Environmental and Civil Engineering.

[7]  N. Savalle,et al.  Experimental and numerical studies on scaled-down dry-joint retaining walls: Pseudo-static approach to quantify the resistance of a dry-joint brick retaining wall , 2019, Bulletin of Earthquake Engineering.

[8]  Vasilis Sarhosis,et al.  Discrete element modeling , 2019, Numerical Modeling of Masonry and Historical Structures.

[9]  C. O’Sullivan,et al.  Analytical study of the accuracy of discrete element simulations , 2017 .

[10]  Jean-Claude Morel,et al.  Modeling the 2D behavior of dry‐stone retaining walls by a fully discrete element method , 2016 .

[11]  Hide Sakaguchi,et al.  The effects of block shape on the seismic behavior of dry-stone masonry retaining walls: A numerical investigation by discrete element modeling , 2014 .

[12]  Michael C. Griffith,et al.  Dry Stone Masonry Walls in Bending—Part II: Analysis , 2014 .

[13]  Gabriele Milani,et al.  Characterization of the response of quasi-periodic masonry: Geometrical investigation, homogenization and application to the Guimarães castle, Portugal , 2013 .

[14]  Mauro Sassu,et al.  Archaeological Consolidation of UNESCO Masonry Structures in Oman: The Sumhuram Citadel of Khor Rori and the Al Balid Fortress , 2013 .

[15]  Jean-Claude Morel,et al.  Assessing the two-dimensional behaviour of drystone retaining walls by full-scale experiments and yield design simulation , 2013 .

[16]  J. Taboada,et al.  Stability of granite drystone masonry retaining walls: II. Relevant parameters and analytical and numerical studies of real walls , 2012 .

[17]  Anne Sophie Colas,et al.  Full-scale field trials to assess dry-stone retaining wall stability , 2010 .

[18]  P. Walker,et al.  Behaviour of drystone retaining structures , 2010 .

[19]  A. Rodríguez,et al.  Desarrollo y perspectivas de los sistemas de andenería de los Andes centrales del Perú , 2009 .

[20]  Jean-Claude Morel,et al.  Experimental assessment of dry stone retaining wall stability on a rigid foundation , 2007 .

[21]  José V. Lemos,et al.  Discrete Element Modeling of Masonry Structures , 2007 .

[22]  Eduardo Kausel,et al.  The Impact of High-Frequency/ Low-Energy Seismic Waves on Unreinforced Masonry , 2007 .

[23]  Takahiro Sugano,et al.  Seismic Design Guidelines For Port Structures , 2001 .