Experimental Evidence of Chaos from Memristors

Until now, most memristor-based chaotic circuits proposed in the literature are based on mathematical models which assume ideal characteristics such as piece-wise linear or cubic nonlinearities. The idea, illustrated here and originating from the experimental approach for device characterization, is to realize a chaotic system exploiting the non-linearity of only one memristor with a very simple experimental set-up using feedback. In this way a simple circuit is obtained and chaos is experimentally observed and is confirmed by the calculation of the largest Lyapunov exponent. Numerical results using the Strukov model support the existence of robust chaos in our circuit. This is the first experimental demonstration of chaos in a real memristor circuit and suggests that memristors are well placed for hardware encryption.

[1]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[2]  Stephen J. Wolf,et al.  The elusive memristor: properties of basic electrical circuits , 2008, 0807.3994.

[3]  J. Suehle,et al.  A Flexible Solution-Processed Memristor , 2009, IEEE Electron Device Letters.

[4]  Luigi Fortuna,et al.  A Gallery of Chaotic oscillators Based on HP memristor , 2013, Int. J. Bifurc. Chaos.

[5]  D. Ielmini,et al.  Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories , 2010 .

[6]  M. Rosenstein,et al.  A practical method for calculating largest Lyapunov exponents from small data sets , 1993 .

[7]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[8]  Georgios Ch. Sirakoulis,et al.  Boolean Logic Operations and Computing Circuits Based on Memristors , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[9]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[10]  C. Toumazou,et al.  A Versatile Memristor Model With Nonlinear Dopant Kinetics , 2011, IEEE Transactions on Electron Devices.

[11]  Andrew Adamatzky,et al.  Emergent spiking in non-ideal memristor networks , 2012, Microelectron. J..

[12]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[13]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[14]  L. Chua Memristor-The missing circuit element , 1971 .

[15]  Marcelo Messias,et al.  Hopf bifurcation from Lines of Equilibria without Parameters in Memristor oscillators , 2010, Int. J. Bifurc. Chaos.

[16]  A. Adamatzky,et al.  Drop-coated titanium dioxide memristors , 2012, 1205.2885.

[17]  Ya-Chin King,et al.  A Contact-Resistive Random-Access-Memory-Based True Random Number Generator , 2012, IEEE Electron Device Letters.

[18]  Ella Gale,et al.  TiO2-based memristors and ReRAM: materials, mechanisms and models (a review) , 2014, ArXiv.

[19]  Luigi Fortuna,et al.  Memristive Chaotic Circuits Based on Cellular nonlinear Networks , 2012, Int. J. Bifurc. Chaos.

[20]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[21]  包伯成,et al.  Chaotic memristive circuit: equivalent circuit realization and dynamical analysis , 2011 .

[22]  Andrew Adamatzky,et al.  The effect of changing electrode metal on solution-processed flexible titanium dioxide memristors , 2011, 1106.6293.

[23]  Dalibor Biolek,et al.  SPICE Model of Memristor with Nonlinear Dopant Drift , 2009 .

[24]  D. Ielmini,et al.  Modeling the Universal Set/Reset Characteristics of Bipolar RRAM by Field- and Temperature-Driven Filament Growth , 2011, IEEE Transactions on Electron Devices.

[25]  Giovanni Egidio Pazienza,et al.  A brief analysis of the main SPICE models of the memristor , 2012, 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012).

[26]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[27]  R. Williams,et al.  Exponential ionic drift: fast switching and low volatility of thin-film memristors , 2009 .

[28]  X. Jianping,et al.  Initial State Dependent Dynamical Behaviors in a Memristor Based Chaotic Circuit , 2010 .

[29]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[30]  J. Albo-Canals,et al.  Teaching Memristors to EE Undergraduate Students [Class Notes] , 2011, IEEE Circuits and Systems Magazine.

[31]  Kyung Hyun Choi,et al.  Cost-effective fabrication of memristive devices with ZnO thin film using printed electronics technologies , 2012 .

[32]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[33]  包伯成,et al.  Initial State Dependent Dynamical Behaviors in a Memristor Based Chaotic Circuit , 2010 .

[34]  Bocheng Bao,et al.  Steady periodic memristor oscillator with transient chaotic behaviours , 2010 .

[35]  J. Yang,et al.  Switching dynamics in titanium dioxide memristive devices , 2009 .

[36]  Jeyavijayan Rajendran,et al.  Leveraging Memristive Systems in the Construction of Digital Logic Circuits , 2012, Proceedings of the IEEE.

[37]  Andrew Adamatzky,et al.  Boolean Logic Gates from a Single Memristor via Low-Level Sequential Logic , 2013, UCNC.

[38]  Uri C. Weiser,et al.  MAGIC—Memristor-Aided Logic , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[39]  Kyung Hyun Choi,et al.  Fabrication of TiO2 thin film memristor device using electrohydrodynamic inkjet printing , 2012 .

[40]  Peng Li,et al.  Dynamical Properties and Design Analysis for Nonvolatile Memristor Memories , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[41]  Dalibor Biolek,et al.  Some fingerprints of ideal memristors , 2013, 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013).