Spider: improving mobile networking with concurrent wi-fi connections

We investigate attempting concurrent connections to multiple Wi-Fi access points (APs) from highly mobile clients. Previous multi-AP solutions are limited to stationary wireless clients and do not take into account a myriad of mobile factors. We show that connection duration, AP response times, channel scheduling, available and offered bandwidth, node speed, and dhcp joins all affect performance. Building on these results, we present a system, Spider, that establishes and maintains concurrent connections to 802.11 APs in a mobile environment. While Spider can manage multiple channels, we demonstrate that it achieves maximum throughput when using multiple APs on a single channel.

[1]  Brian D. Noble,et al.  BreadCrumbs: forecasting mobile connectivity , 2008, MobiCom '08.

[2]  Samir Ranjan Das,et al.  Predictive methods for improved vehicular WiFi access , 2009, MobiSys '09.

[3]  Kemal Fidanboylu,et al.  An Overview of Handoff Techniques in Cellular Networks , 2005 .

[4]  Mike Y. Chen,et al.  Improved access point selection , 2006, MobiSys '06.

[5]  Haiyun Luo,et al.  Flow Scheduling for End-Host Multihoming , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[6]  Peter Steenkiste,et al.  Fixing 802.11 access point selection , 2002, CCRV.

[7]  Srikanth Kandula,et al.  FatVAP: Aggregating AP Backhaul Capacity to Maximize Throughput , 2008, NSDI.

[8]  Arun Venkataramani,et al.  Interactive wifi connectivity for moving vehicles , 2008, SIGCOMM '08.

[9]  Hari Balakrishnan,et al.  Improving loss resilience with multi-radio diversity in wireless networks , 2005, MobiCom '05.

[10]  Paramvir Bahl,et al.  MultiNet: connecting to multiple IEEE 802.11 networks using a single wireless card , 2004, IEEE INFOCOM 2004.

[11]  Pablo Rodriguez,et al.  MAR: a commuter router infrastructure for the mobile Internet , 2004, MobiSys '04.

[12]  Victor C. M. Leung,et al.  A wireless local area network employing distributed radio bridges , 1996, Wirel. Networks.

[13]  Aruna Balasubramanian,et al.  DOME: a diverse outdoor mobile testbed , 2009, HotPlanet '09.

[14]  Arun Venkataramani,et al.  Augmenting mobile 3G using WiFi , 2010, MobiSys '10.

[15]  Hari Balakrishnan,et al.  Cabernet: vehicular content delivery using WiFi , 2008, MobiCom '08.

[16]  Brian Neil Levine,et al.  Spider: improving mobile networking with concurrent wi-fi connections , 2011, SIGCOMM 2011.

[17]  John V. Guttag,et al.  Horde: separating network striping policy from mechanism , 2005, MobiSys '05.

[18]  Hari Balakrishnan,et al.  A measurement study of vehicular internet access using in situ Wi-Fi networks , 2006, MobiCom '06.

[19]  Andrew J. Viterbi,et al.  Soft Handoff Extends CDMA Cell Coverage and Increase Reverse Link Capacity , 1994, Mobile Communications.

[20]  Yang Zhang,et al.  CarTel: a distributed mobile sensor computing system , 2006, SenSys '06.

[21]  Hari Balakrishnan,et al.  Divert: fine-grained path selection for wireless LANs , 2004, MobiSys '04.

[22]  Andreas Timm-Giel,et al.  MobiSteer: using steerable beam directional antenna for vehicular network access , 2007, MobiSys '07.

[23]  Brian D. Noble,et al.  Juggler: Virtual Networks for Fun and Profit , 2010, IEEE Transactions on Mobile Computing.