List Edge-Colorings of Series-Parallel Graphs

It is proved that for every integer $k\ge3$, for every (simple) series-parallel graph $G$ with maximum degree at most $k$, and for every collection $(L(e):e\in E(G))$ of sets, each of size at least $k$, there exists a proper edge-coloring of $G$ such that for every edge $e\in E(G)$, the color of $e$ belongs to $L(e)$.