Time-frequency distributions for crack detection in rotors - a fundamental note

Abstract This correspondence gives insight into properties of Wigner–Ville time–frequency power spectral analysis and also suggests better time–frequency power spectral tools to study cracks in rotors. Simulation results show that Choi–Williams and hyperbolic distributions can be effectively used for crack detection in rotors.

[1]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[2]  J. Zou,et al.  A comparative study on time–frequency feature of cracked rotor by Wigner–Ville distribution and wavelet transform , 2004 .

[3]  Antonio H. Costa,et al.  Design of time-frequency representations using a multiform, tiltable exponential kernel , 1995, IEEE Trans. Signal Process..

[4]  Gregory K. Egan,et al.  On mathematical derivations of auto-term functions and signal-to-noise ratios of the Choi-Williams, first- and nth-order hyperbolic kernels , 2006, Digit. Signal Process..

[5]  Gregory K. Egan,et al.  Hyperbolic wavelet power spectra of nonstationary signals , 2003 .

[6]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[7]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[8]  Benjamin A. Carreras,et al.  Wavelet bicoherence: A new turbulence analysis tool , 1995 .

[9]  Gregory K. Egan,et al.  Hyperbolic wavelet family , 2004 .

[10]  William J. Williams,et al.  Improved time-frequency representation of multicomponent signals using exponential kernels , 1989, IEEE Trans. Acoust. Speech Signal Process..

[11]  Ljubisa Stankovic,et al.  Further results on the minimum variance time-frequency distribution kernels , 1997, IEEE Trans. Signal Process..

[12]  Leon Cohen On a fundamental property of the Wigner distribution , 1987, IEEE Trans. Acoust. Speech Signal Process..

[13]  Gregory K. Egan,et al.  Hyperbolic kernel for time-frequency power spectrum , 2003 .

[14]  Hidalgo,et al.  Nonlinear phenomena and intermittency in plasma turbulence. , 1995, Physical review letters.

[15]  T. Claasen,et al.  THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .