Kernel discriminant analysis for regression problems

[1]  Welch Bl THE GENERALIZATION OF ‘STUDENT'S’ PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED , 1947 .

[2]  E. Nadaraya On Estimating Regression , 1964 .

[3]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[4]  David G. Stork,et al.  Pattern Classification , 1973 .

[5]  T. Hassard,et al.  Applied Linear Regression , 2005 .

[6]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[7]  Shingo Tomita,et al.  An optimal orthonormal system for discriminant analysis , 1985, Pattern Recognit..

[8]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[9]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[10]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[11]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[12]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[13]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[14]  Hiroshi Motoda,et al.  Feature Extraction, Construction and Selection: A Data Mining Perspective , 1998 .

[15]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[16]  B. Scholkopf,et al.  Fisher discriminant analysis with kernels , 1999, Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468).

[17]  Marian Stewart Bartlett,et al.  Classifying Facial Actions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[19]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[20]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[21]  Andrzej Cichocki,et al.  Kernel PCA for Feature Extraction and De-Noising in Nonlinear Regression , 2001, Neural Computing & Applications.

[22]  I. Jolliffe Principal Component Analysis , 2002 .

[23]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[24]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[25]  Chong-Ho Choi,et al.  Feature Extraction Based on ICA for Binary Classification Problems , 2003, IEEE Trans. Knowl. Data Eng..

[26]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[27]  Robert P. W. Duin,et al.  Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Pascal Vincent,et al.  Kernel Matching Pursuit , 2002, Machine Learning.

[29]  Xiaogang Wang,et al.  A unified framework for subspace face recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Marco Loog,et al.  Supervised dimensionality reduction and contextual pattern recognition in medical image processing , 2004 .

[31]  Lawrence Cayton,et al.  Algorithms for manifold learning , 2005 .

[32]  Malik Beshir Malik,et al.  Applied Linear Regression , 2005, Technometrics.

[33]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Stefan Schaal,et al.  Incremental Online Learning in High Dimensions , 2005, Neural Computation.

[35]  Ming Li,et al.  2D-LDA: A statistical linear discriminant analysis for image matrix , 2005, Pattern Recognit. Lett..

[36]  Nojun Kwak,et al.  Dimensionality reduction based on ICA for regression problems , 2006, Neurocomputing.

[37]  Neil Salkind Encyclopedia of Measurement and Statistics , 2006 .

[38]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Stephen Lin,et al.  Marginal Fisher Analysis and Its Variants for Human Gait Recognition and Content- Based Image Retrieval , 2007, IEEE Transactions on Image Processing.

[40]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[41]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[42]  Jung-Won Lee,et al.  Feature extraction based on subspace methods for regression problems , 2010, Neurocomputing.

[43]  Inderjit S. Dhillon,et al.  Inductive Regularized Learning of Kernel Functions , 2010, NIPS.

[44]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[45]  V. Kshirsagar,et al.  Face recognition using Eigenfaces , 2011, 2011 3rd International Conference on Computer Research and Development.