An in-situ transient photo-induced voltage method to understand the PEC efficiency of C, N co-doped TiO2 photoanode

[1]  K. Nanda,et al.  Modulating the Midgap States of 3D–2D Hybrid ZnO by Codoping and Its Effect on Visible Photocatalysis , 2022, Industrial & Engineering Chemistry Research.

[2]  Hui Huang,et al.  Converting water impurity in organic solvent into hydrogen and hydrogen peroxide by organic semiconductor photocatalyst , 2021, Applied Catalysis B: Environmental.

[3]  Hui Huang,et al.  Carbon dots enhance the interface electron transfer and photoelectrochemical kinetics in TiO2 photoanode , 2021, Applied Catalysis B: Environmental.

[4]  Y. Liu,et al.  Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production , 2021, Applied Catalysis B: Environmental.

[5]  Huayang Liu,et al.  Preparation of ordered mesoporous F–H2Ti3O7 nanosheets using orthorhombic HTiOF3 as a precursor and their highly efficient degradation of tetracycline hydrochloride under simulated sunlight , 2021 .

[6]  Yong Zhou,et al.  WO3 homojunction photoanode: Integrating the advantages of WO3 different facets for efficient water oxidation , 2021 .

[7]  Hui Huang,et al.  Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance , 2021, Nano Research.

[8]  Hui Huang,et al.  A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater , 2021, Nature Communications.

[9]  Hui Huang,et al.  A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite , 2020, Nano Research.

[10]  Mingfei Shao,et al.  Facet engineering of WO3 arrays toward highly efficient and stable photoelectrochemical hydrogen generation from natural seawater , 2020 .

[11]  X. Lou,et al.  Fabrication of Heterostructured Fe2TiO5-TiO2 Nanocages with Enhanced Photoelectrochemical Performance for Solar Energy Conversion. , 2020, Angewandte Chemie.

[12]  Lei Li,et al.  3D CQDs-{001}TiO2/Ti photoelectrode with dominant {001} facets: Efficient visible-light-driven photoelectrocatalytic oxidation of organic pollutants and mechanism insight , 2020 .

[13]  Qunjie Xu,et al.  Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting , 2020 .

[14]  Mei Li,et al.  Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde , 2019, Applied Catalysis B: Environmental.

[15]  D. Ding,et al.  Facile preparation of Ti3+/Ni co-doped TiO2 nanotubes photoanode for efficient photoelectrochemical water splitting , 2019, Applied Surface Science.

[16]  Yanli Zhao,et al.  Synergistically enhanced charge separation in BiFeO3/Sn:TiO2 nanorod photoanode via bulk and surface dual modifications , 2019, Nano Energy.

[17]  Hui Ling Tan,et al.  Heterogeneous photocatalysts: an overview of classic and modern approaches for optical, electronic, and charge dynamics evaluation. , 2019, Chemical Society reviews.

[18]  Jie Lu,et al.  Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate , 2018, RSC advances.

[19]  P. Schmuki,et al.  Hematite dodecahedron crystals with high-index facets grown and grafted on one dimensional structures for efficient photoelectrochemical H2 generation , 2018, Nano Energy.

[20]  Gongming Wang,et al.  The “Midas Touch” Transformation of TiO2 Nanowire Arrays during Visible Light Photoelectrochemical Performance by Carbon/Nitrogen Coimplantation , 2018 .

[21]  Zhuo. Sun,et al.  Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode , 2018, Chemical Engineering Journal.

[22]  Lei Wang,et al.  Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation. , 2018, Angewandte Chemie.

[23]  Yue Zhu,et al.  Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO3/BiVO4 Nanoporous Sphere Arrays. , 2017, Nano letters.

[24]  Linjun Wang,et al.  Simultaneous Enhancement of Charge Separation and Hole Transportation in a TiO2–SrTiO3 Core–Shell Nanowire Photoelectrochemical System , 2017, Advanced materials.

[25]  Xuhui Sun,et al.  Lowering the Onset Potential of Fe2TiO5/Fe2O3 Photoanodes by Interface Structures: F- and Rh-Based Treatments , 2017 .

[26]  W. Mai,et al.  Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes , 2017 .

[27]  W. Zhou,et al.  Black TiO2 nanobelts/g-C3N4 nanosheets Laminated Heterojunctions with Efficient Visible-Light-Driven Photocatalytic Performance , 2017, Scientific Reports.

[28]  E. Xie,et al.  Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting , 2016 .

[29]  Xiuli Wang,et al.  Time-resolved photoluminescence of anatase/rutile TiO2 phase junction revealing charge separation dynamics , 2016 .

[30]  Alok M. Tripathi,et al.  Facile Synthesis of [101]-Oriented Rutile TiO2 Nanorod Array on FTO Substrate with a Tunable Anatase–Rutile Heterojunction for Efficient Solar Water Splitting , 2016 .

[31]  D. Kuo,et al.  N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light , 2016 .

[32]  A. Du,et al.  Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance , 2016 .

[33]  Yi-bing Cheng,et al.  Planar versus mesoscopic perovskite microstructures: The influence of CH3NH3PbI3 morphology on charge transport and recombination dynamics , 2016 .

[34]  Chin Sheng Chua,et al.  The effect of crystallinity on photocatalytic performance of Co3O4 water-splitting cocatalysts. , 2016, Physical chemistry chemical physics : PCCP.

[35]  P. Kajitvichyanukul,et al.  Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light , 2016, Environmental Science and Pollution Research.

[36]  R. van de Krol,et al.  Semiconducting materials for photoelectrochemical energy conversion , 2016, Nature Reviews Materials.

[37]  G. Lu,et al.  Improved performance of surface functionalized TiO2/activated carbon for adsorption–photocatalytic reduction of Cr(VI) in aqueous solution , 2015 .

[38]  James L. Young,et al.  Phosphonic Acid Modification of GaInP2 Photocathodes Toward Unbiased Photoelectrochemical Water Splitting. , 2015, ACS applied materials & interfaces.

[39]  B. McCloskey,et al.  An electrochemical impedance spectroscopy investigation of the overpotentials in Li-O2 batteries. , 2015, ACS applied materials & interfaces.

[40]  B. Pan,et al.  Freestanding atomically-thin cuprous oxide sheets for improved visible-light photoelectrochemical water splitting , 2014 .

[41]  De-jun Wang,et al.  Surface treatment with Al3+on a Ti-doped α-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting , 2014 .

[42]  Takeshi Morikawa,et al.  Structural improvement of CaFe₂O₄ by metal doping toward enhanced cathodic photocurrent. , 2014, ACS applied materials & interfaces.

[43]  Chongyin Yang,et al.  Effective nonmetal incorporation in black titania with enhanced solar energy utilization , 2014 .

[44]  Michael Grätzel,et al.  The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments , 2012 .

[45]  Hui‐Ming Cheng,et al.  A red anatase TiO2 photocatalyst for solar energy conversion , 2012 .

[46]  Kazunari Domen,et al.  Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. , 2012, Journal of the American Chemical Society.

[47]  P. P. González-Borrero,et al.  Energy-level and optical properties of nitrogen doped TiO2: An experimental and theoretical study , 2011 .

[48]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[49]  M. Grätzel,et al.  Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger , 2011 .

[50]  Yasumichi Matsumoto,et al.  Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. , 2010, Journal of the American Chemical Society.

[51]  Kazunari Domen,et al.  Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation. , 2010, Journal of the American Chemical Society.

[52]  Jennifer K. Hensel,et al.  Synergistic effect of CdSe quantum dot sensitization and nitrogen doping of TiO(2) nanostructures for photoelectrochemical solar hydrogen generation. , 2010, Nano letters.

[53]  A. Manivannan,et al.  Origin of photocatalytic activity of nitrogen-doped TiO2 nanobelts. , 2009, Journal of the American Chemical Society.

[54]  Jinbao Wan,et al.  Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process , 2008 .

[55]  Zhengyou Liu,et al.  Wettability of urea-doped TiO2 nanoparticles and their high electrorheological effects , 2008 .

[56]  Jin Zou,et al.  Anatase TiO2 single crystals with a large percentage of reactive facets , 2008, Nature.

[57]  G. Pacchioni,et al.  Theory of Carbon Doping of Titanium Dioxide , 2005 .

[58]  J. Turner,et al.  Suppression of Band Edge Migration at the p-GaInP2/H2O Interface under Illumination via Catalysis , 2000 .

[59]  L. Kronik,et al.  Surface photovoltage phenomena: theory, experiment, and applications , 1999 .

[60]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[61]  Hui Huang,et al.  Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation , 2022 .

[62]  Hui Huang,et al.  The Electron Transport Regulation in Carbon Dots/In2O3 Electrocatalyst Enable 100% Selectivity for Oxygen Reduction to Hydrogen Peroxide , 2022 .

[63]  Zhenzhen Wang,et al.  Carbon dots/PtW6O24 composite as efficient and stable electrocatalyst for hydrogen oxidation reaction in PEMFCs , 2021 .

[64]  S. Nam,et al.  Compositional engineering of solution-processed BiVO4 photoanodes toward highly efficient photoelectrochemical water oxidation , 2018 .

[65]  Guangming Zeng,et al.  Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven , 2018 .

[66]  Y. Lei,et al.  Constructing a AZO/TiO2 Core/Shell Nanocone Array with Uniformly Dispersed Au NPs for Enhancing Photoelectrochemical Water Splitting , 2016 .

[67]  W. Choi,et al.  N-doped TiO2 nanotubes coated with a thin TaOxNy layer for photoelectrochemical water splitting: dual bulk and surface modification of photoanodes , 2015 .