Summations of polylogarithms via evaluation transform

In this work, the Evaluation transform is adapted to interpret the polylogarithms as being the Evaluation of the words yxn, for meromorphic kernels and meromorphic inputs. The functional equations on polylogarithms can be obtained, then, via combinatorics on words and the relations between the inputs. Some identities concerning these special functions are also proposed via the products of generating series.

[1]  J. Ch. Fiorot,et al.  Courbes splines rationnelles : applications à la CAO , 1992 .

[2]  Frédéric Boussemart La simulation graphique interactive des systèmes dynamiques non linéaires : conception et réalisation en Scratchpad , 1992 .

[3]  Don Zagier,et al.  The remarkable dilogarithm , 1988 .

[4]  D. Ramakrishnan On the monodromy of higher logarithms , 1982 .

[5]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[6]  Robert F. Coleman,et al.  Dilogarithms, regulators andp-adicL-functions , 1982 .

[7]  J. Ch. Fiorot,et al.  Courbes et surfaces rationnelles : applications a la CAO , 1989 .

[8]  M. Fliess Réalisation locale des systèmes non linéaires, algèbres de Lie filtrées transitives et séries génératrices non commutatives , 1983 .

[9]  Pierre Cartier,et al.  Jacobiennes généralisées, monodromie unipotente et intégrales itérées , 1987 .

[10]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[11]  Don Zagier,et al.  The Bloch-Wigner-Ramakrishnan polylogarithm function , 1990 .

[12]  Z. Wojtkowiak A note on functional equations of the $p$-adic polylogarithms , 1991 .

[13]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[14]  V. Hoang Ngoc Minh,et al.  SYMBOLIC CALCULUS AND VOLTERRA SERIES , 1989 .

[15]  V. Hoang Ngoc Minh,et al.  Evaluation transform and its implementation in MACSYMA , 1991 .

[16]  Christiane Hespel,et al.  Approximation of Nonlinear Dynamic Systems by Rational Series , 1991, Theor. Comput. Sci..

[17]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[18]  D. Zagier Polylogarithms, Dedekind Zeta Functions, and the Algebraic K-Theory of Fields , 1991 .

[19]  C. Hespel,et al.  Truncated bilinear approximants: Carleman, finite volterra, Padé-type, geometric and structural automata , 1991 .

[20]  V. Hoang Ngoc Minh,et al.  Evaluation Transform , 1991, Theor. Comput. Sci..

[21]  S. Bloch The dilogarithm and extensions of Lie algebras , 1981 .

[22]  J. Bass Cours de mathématiques , 1959 .

[23]  Françoise Lamnabhi-Lagarrigue,et al.  An algebraic approach to nonlinear functional expansions , 1983 .

[24]  Hyman Bass,et al.  Algebraic K-theory , 1968 .