Pseudomonas aeruginosa-induced IL-1β production is inhibited by Sophora flavescens via the NF-κB/inflammasome pathways

[1]  U. Ha,et al.  Nucleoside Diphosphate Kinase and Flagellin from Pseudomonas aeruginosa Induce Interleukin 1 Expression via the Akt/NF-κB Signaling Pathways , 2014, Infection and Immunity.

[2]  P. Kiem,et al.  Anti‐Inflammatory and PPAR Transactivational Properties of Flavonoids from the Roots of Sophora flavescens , 2013, Phytotherapy research : PTR.

[3]  Hyung Gyun Kim,et al.  Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. , 2012, Food and Chemical Toxicology.

[4]  L. French,et al.  Interleukin-1, inflammasomes, autoinflammation and the skin. , 2012, Swiss medical weekly.

[5]  U. Ha,et al.  Up-regulation of human bradykinin B1 receptor by secreted components of Pseudomonas aeruginosa via a NF-κB pathway in epithelial cells. , 2011, FEMS immunology and medical microbiology.

[6]  F. Re,et al.  Role of the Inflammasome, IL-1β, and IL-18 in Bacterial Infections , 2011, TheScientificWorldJournal.

[7]  S. McColley,et al.  Clinical Significance of Microbial Infection and Adaptation in Cystic Fibrosis , 2011, Clinical Microbiology Reviews.

[8]  L. Yu,et al.  Anti-Inflammatory and antiproliferative activities of trifolirhizin, a flavonoid from Sophora flavescens roots. , 2009, Journal of agricultural and food chemistry.

[9]  J. Kim,et al.  Sophora flavescens Aiton inhibits the production of pro-inflammatory cytokines through inhibition of the NF kappaB/IkappaB signal pathway in human mast cell line (HMC-1). , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[10]  G. Núñez,et al.  The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis , 2009, Nature Immunology.

[11]  Mauricio Valencia,et al.  Ventilator-associated pneumonia , 2009, Current opinion in critical care.

[12]  Jonathan R Edwards,et al.  Overview of nosocomial infections caused by gram-negative bacilli. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[13]  J. Tichelaar,et al.  Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. , 2005, American journal of respiratory cell and molecular biology.

[14]  D. Honeybourne,et al.  Impact of sputum bacteria on airway inflammation and health status in clinical stable COPD , 2004, European Respiratory Journal.

[15]  T Hayashi,et al.  Antibacterial and antiandrogen flavonoids from Sophora flavescens. , 1999, Journal of natural products.

[16]  K. Osanai,et al.  Effects of interleukin‐1β on DNA synthesis in rat alveolar type II cells in primary culture , 1999 .

[17]  C. Dinarello Interleukin‐1β, Interleukin‐18, and the Interleukin‐1β Converting Enzyme a , 1998 .

[18]  A. Smith,et al.  Longitudinal study of inflammatory factors in serum, cerebrospinal fluid, and brain tissue in Alzheimer disease: interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist, tumor necrosis factor-alpha, the soluble tumor necrosis factor receptors I and II, and alpha1-antichymotrypsin. , 1998, Alzheimer disease and associated disorders.

[19]  C. Dinarello,et al.  Biologic basis for interleukin-1 in disease. , 1996, Blood.

[20]  A. C. Webb,et al.  Interleukin-1: a gene expression system regulated at multiple levels. , 1994, European cytokine network.

[21]  Dudley H. Williams,et al.  The evolutionary role of secondary metabolites--a review. , 1992, Gene.

[22]  S. V. Von Essen,et al.  Endotoxin stimulates bronchial epithelial cells to release chemotactic factors for neutrophils. A potential mechanism for neutrophil recruitment, cytotoxicity, and inhibition of proliferation in bronchial inflammation. , 1991, Journal of immunology.

[23]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[24]  B. Holloway Genetic recombination in Pseudomonas aeruginosa. , 1955, Journal of general microbiology.

[25]  H. D. Liggitt,et al.  Redundant Toll-like receptor signaling in the pulmonary host response to Pseudomonas aeruginosa. , 2007, American journal of physiology. Lung cellular and molecular physiology.

[26]  P. Tak,et al.  NF-κB: a key role in inflammatory diseases , 2001 .