Detection of climate transitions and discontinuities by Hurst rescaling

The method of Outcalt et al., based on work developed originally by Hurst, is re‐examined to evaluate its efficacy in delineating changes in trends and identifying regime shifts in climatic‐related time series. This technique is based on the concept of the normalized rescaled running sum where temporal changes in the Hurst exponent can be used to identify climatic trends from one regime to another as each regime has a characteristic distribution that differs from the statistical characteristics of the complete time series. An examination of the temporal change in the amplitude of the normalized rescaled running sum can be used as a method to identify these regime changes, which may be either real (i.e., a true climatic shift) or induced (i.e., through a change in measurement bias, station location, or other nonclimatic influence). Examples shown here focus on examining time series of the Pacific Decadal Oscillation, Arctic thaw depth, the Northern Hemisphere snow cover extent, treeflow data from Lees Ferry (AZ), North Atlantic tropical cyclone frequency, and central England air temperatures.

[1]  Kaijie Niu,et al.  Analysis on the Variation of Hydro-Meteorological Variables in the Yongding River Mountain Area Driven by Multiple Factors , 2021, Remote. Sens..

[2]  M. Ghil,et al.  Automatic detection of abrupt transitions in paleoclimate records. , 2021, Chaos.

[3]  Wen‐ping He,et al.  A new early warning indicator of abrupt climate change based on the changing normalized dynamic range , 2021, International Journal of Climatology.

[4]  Curry J. Cunningham,et al.  The changing physical and ecological meanings of North Pacific Ocean climate indices , 2020, Proceedings of the National Academy of Sciences.

[5]  Fateh Chebana,et al.  Change point detection of flood events using a functional data framework , 2020, Advances in Water Resources.

[6]  N. Dhakal,et al.  On the use of Bayesian quantile regression method to explore the historical trends in extreme precipitation and their connections with large-scale climate patterns over the contiguous USA , 2019, Theoretical and Applied Climatology.

[7]  Adam Elder,et al.  Estimation and inference for upper hinge regression models , 2019, Environmental and Ecological Statistics.

[8]  M. Hrachowitz,et al.  Comparative analysis of nonparametric change-point detectors commonly used in hydrology , 2019, Hydrological Sciences Journal.

[9]  P Muthuramu,et al.  Tests for Structural Breaks in Time Series Analysis: A Review of Recent Development , 2019 .

[10]  L. Halsey The reign of the p-value is over: what alternative analyses could we employ to fill the power vacuum? , 2019, Biology Letters.

[11]  N. Lazar,et al.  Moving to a World Beyond “p < 0.05” , 2019, The American Statistician.

[12]  E. Ruggieri,et al.  Change point analysis of global temperature records , 2019, International Journal of Climatology.

[13]  Manfred Mudelsee,et al.  Trend analysis of climate time series: A review of methods , 2019, Earth-Science Reviews.

[14]  Hung T. Nguyen,et al.  The Replacement for Hypothesis Testing , 2018, Structural Changes and their Econometric Modeling.

[15]  William M. Briggs,et al.  Everything Wrong with P-Values Under One Roof , 2018, ECONVN.

[16]  Alessandro Casini,et al.  Structural Breaks in Time Series , 2018, Oxford Research Encyclopedia of Economics and Finance.

[17]  Bin Gu,et al.  Can kurtosis be an early warning signal for abrupt climate change? , 2018, Climate Dynamics.

[18]  S. Gould The Scientific Legacy , 2018, Ivan Stranski — the Grandmaster of Crystal Growth.

[19]  J. Overland,et al.  Assessing Change-Points in Surface Air Temperature Over Alaska , 2018, Front. Environ. Sci..

[20]  Xiaofei Nie,et al.  Trend and Change-Point Analysis of Streamflow and Sediment Discharge of the Gongshui River in China during the Last 60 Years , 2018, Water.

[21]  Norman G. Loeb,et al.  Changes in Earth’s Energy Budget during and after the “Pause” in Global Warming: An Observational Perspective , 2018, Climate.

[22]  M. Chamecki,et al.  The Hurst Phenomenon in Error Estimates Related to Atmospheric Turbulence , 2018, Boundary-Layer Meteorology.

[23]  Dennis K. J. Lin,et al.  Time series smoother for effect detection , 2018, PloS one.

[24]  Yuanbo Liu,et al.  Spatio‐temporal pattern of meteorological droughts and its possible linkage with climate variability , 2018 .

[25]  Ataur Rahman,et al.  Characterizing changes in rainfall: a case study for New South Wales, Australia , 2018 .

[26]  THE RECORD-BREAKING , 2018 .

[27]  B. Hamann,et al.  Change Point Detection , 2018 .

[28]  Demetris Koutsoyiannis,et al.  From Fractals to Stochastics: Seeking Theoretical Consistency in Analysis of Geophysical Data , 2018 .

[29]  Trend Detection in Climate Change Indicators Using Non-Parametric Statistics: A Case Study of Abu Dhabi, United Arab Emirates , 2017 .

[30]  Roel F. Ceballos,et al.  On The Estimation of the Hurst Exponent Using Adjusted Rescaled Range Analysis, Detrended Fluctuation Analysis and Variance Time Plot: A Case of Exponential Distribution , 2017, 1805.08931.

[31]  William M. Briggs The Substitute for p-Values , 2017 .

[32]  David Gal,et al.  Statistical Significance and the Dichotomization of Evidence , 2017 .

[33]  Si Chen,et al.  Bayesian change point analysis for extreme daily precipitation , 2017 .

[34]  Xuezhi Tan,et al.  Multifractality of Canadian precipitation and streamflow , 2017 .

[35]  Demetris Koutsoyiannis,et al.  The scientific legacy of Harold Edwin Hurst (1880–1978) , 2016 .

[36]  Khaled H. Hamed,et al.  Harold Edwin Hurst: the Nile and Egypt, past and future , 2016 .

[37]  S. Mauget Optimal ranking regime analysis of TreeFlow dendrohydrological reconstructions , 2015 .

[38]  David A. Robinson,et al.  A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring , 2015 .

[39]  Demetris Koutsoyiannis,et al.  Negligent killing of scientific concepts: the stationarity case , 2015 .

[40]  Nicholas A. Bond,et al.  Causes and impacts of the 2014 warm anomaly in the NE Pacific , 2015 .

[41]  D. Hartmann Pacific sea surface temperature and the winter of 2014 , 2015 .

[42]  Demetris Koutsoyiannis,et al.  Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes , 2015, Stochastic Environmental Research and Risk Assessment.

[43]  N. Mantua,et al.  Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012 , 2014, Proceedings of the National Academy of Sciences.

[44]  J. Andrade,et al.  Statistical comparison of the slopes of two regression lines: A tutorial. , 2014, Analytica chimica acta.

[45]  R. McKitrick,et al.  HAC robust trend comparisons among climate series with possible level shifts , 2014 .

[46]  Dingfang Li,et al.  Exploring the ability of the Pettitt method for detecting change point by Monte Carlo simulation , 2014, Stochastic Environmental Research and Risk Assessment.

[47]  C. Landsea,et al.  Atlantic Hurricane Database Uncertainty and Presentation of a New Database Format , 2013 .

[48]  M. Latif,et al.  Hindcast of the 1976/77 and 1998/99 Climate Shifts in the Pacific , 2013 .

[49]  Robert Lund,et al.  Changepoint Detection in Climate Time Series with Long-Term Trends , 2013 .

[50]  Arie C. Seijmonsbergen,et al.  Geomorphological Change Detection Using Object-Based Feature Extraction From Multi-Temporal LiDAR Data , 2013, IEEE Geoscience and Remote Sensing Letters.

[51]  Paris A. Mastorocostas,et al.  Change Point Detection in Time Series Using Higher-Order Statistics: A Heuristic Approach , 2013 .

[52]  Yulia R. Gel,et al.  On detecting non‐monotonic trends in environmental time series: a fusion of local regression and bootstrap , 2013 .

[53]  Demetris Koutsoyiannis,et al.  Hydrology and change , 2013 .

[54]  Eric Ruggieri,et al.  A Bayesian approach to detecting change points in climatic records , 2013 .

[55]  Historical threshold temperatures for Phoenix (urban) and Gila Bend (desert), central Arizona, USA , 2013 .

[56]  Rebecca Willett,et al.  Change-Point Detection for High-Dimensional Time Series With Missing Data , 2012, IEEE Journal of Selected Topics in Signal Processing.

[57]  P. Todhunter,et al.  Uncertainty of the Assumptions Required for Estimating the Regulatory Flood: Red River of the North , 2012 .

[58]  Rosângela Coelho,et al.  Low-frequency ambient noise generator with application to automatic speaker classification , 2012, EURASIP J. Adv. Signal Process..

[59]  Morten W Fagerland,et al.  t-tests, non-parametric tests, and large studies—a paradox of statistical practice? , 2012, BMC Medical Research Methodology.

[60]  Jie Chen,et al.  Change-point analysis as a tool to detect abrupt climate variations , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  J. Lenters,et al.  Interpretation of hydrologic trends from a water balance perspective: The role of groundwater storage in the Budyko hypothesis , 2012 .

[62]  C. Duguay,et al.  Bootstrap-based tests for trends in hydrological time series, with application to ice phenology data , 2011 .

[63]  C. Gandolfi,et al.  A composite statistical method for the detection of multiple undocumented abrupt changes in the mean value within a time series , 2011 .

[64]  A. Brazel,et al.  Application of Hurst Resecaling to Geophysical Serial Data , 2010 .

[65]  X. Shao,et al.  Testing for Change Points in Time Series , 2010 .

[66]  M. Khaliq,et al.  Pacific Decadal Oscillation Climate Variability and Temporal Pattern of Winter Flows in Northwestern North America , 2010 .

[67]  Roger G. Barry,et al.  Changes in North American snowpacks for 1979–2007 detected from the snow water equivalent data of SMMR and SSM/I passive microwave and related climatic factors , 2010 .

[68]  Robin T. Clarke,et al.  On the (mis)use of statistical methods in hydro-climatological research , 2010 .

[69]  Connie A. Woodhouse,et al.  Science and Decision Making: Water Management and Tree‐Ring Data in the Western United States 1 , 2009 .

[70]  J. Chan,et al.  Interdecadal variability of tropical cyclone landfall in the Philippines from 1902 to 2005 , 2009 .

[71]  Anastasios A. Tsonis,et al.  Has the climate recently shifted? , 2009 .

[72]  B. Santer,et al.  The mid-1970s climate shift in the Pacific and the relative roles of forced versus inherent decadal variability. , 2009 .

[73]  P. Chylek,et al.  Multidecadal variability of Atlantic hurricane activity: 1851–2007 , 2008 .

[74]  Demetris Koutsoyiannis,et al.  On the credibility of climate predictions , 2008 .

[75]  Patrick S. Market,et al.  The Interannual variability of hurricane activity in the Atlantic and east pacific regions , 2008 .

[76]  I. Cuthill,et al.  Effect size, confidence interval and statistical significance: a practical guide for biologists , 2007, Biological reviews of the Cambridge Philosophical Society.

[77]  R. Lund,et al.  Changepoint Detection in Periodic and Autocorrelated Time Series , 2007 .

[78]  Robert Lund,et al.  A Review and Comparison of Changepoint Detection Techniques for Climate Data , 2007 .

[79]  J. MacKinnon Bootstrap Hypothesis Testing , 2007 .

[80]  Malcolm K. Hughes,et al.  Medieval drought in the upper Colorado River Basin , 2007 .

[81]  Improved finite‐sample Hurst exponent estimates using rescaled range analysis , 2007 .

[82]  T. Oke,et al.  A Technique to Detect Microclimatic Inhomogeneities in Historical Records of Screen-Level Air Temperature , 2006 .

[83]  Richard A. Davis,et al.  Structural Break Estimation for Nonstationary Time Series Models , 2006 .

[84]  Timothy A. Cohn,et al.  Nature's style: Naturally trendy , 2005 .

[85]  Brian Hartmann,et al.  The Significance of the 1976 Pacific Climate Shift in the Climatology of Alaska , 2005 .

[86]  D. Parker,et al.  Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/joc.1190 UNCERTAINTIES IN CENTRAL ENGLAND TEMPERATURE 1878–2003 AND SOME IMPROVEMENTS TO THE MAXIMUM AND MINIMUM SERIES , 2005 .

[87]  B. Masters Principles of Water Resources: History, Development, Management and Policy , 2005 .

[88]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 2. Time dependence of hydrological processes and time scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 2. Dépendance temporelle des processus hydrologiques et échelle temporelle , 2005 .

[89]  Demetris Koutsoyiannis,et al.  Uncertainty, entropy, scaling and hydrological stochastics. 1. Marginal distributional properties of hydrological processes and state scaling / Incertitude, entropie, effet d'échelle et propriétés stochastiques hydrologiques. 1. Propriétés distributionnelles marginales des processus hydrologiques et , 2005 .

[90]  Mohamed Boutahar,et al.  Evidence on structural changes in U.S. time series , 2005 .

[91]  David Frank,et al.  Effect of scaling and regression on reconstructed temperature amplitude for the past millennium , 2005 .

[92]  K. Holmgren,et al.  Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data , 2005, Nature.

[93]  D. Seidel,et al.  An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes , 2004 .

[94]  Michael A. Palecki,et al.  Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[95]  N. Bond,et al.  Recent shifts in the state of the North Pacific , 2003 .

[96]  John A. Dracup,et al.  ENSO and PDO Effects on Hydroclimatic Variations of the Upper Colorado River Basin , 2003 .

[97]  Demetris Koutsoyiannis The Hurst phenomenon and fractional Gaussian noise made easy , 2002 .

[98]  S. Yue,et al.  Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series , 2002 .

[99]  D. Burn,et al.  Detection of hydrologic trends and variability , 2002 .

[100]  N. Fučkar,et al.  Southern Hemisphere Origins of the 1976 Climate Shift , 2002 .

[101]  Z. Gedalof,et al.  Interdecadal climate variability and regime‐scale shifts in Pacific North America , 2001 .

[102]  Richard M. Vogel,et al.  Trends in floods and low flows in the United States: impact of spatial correlation , 2000 .

[103]  T. Karl,et al.  The record breaking global temperatures of 1997 and 1998: Evidence for an increase in the rate of global warming? , 2000 .

[104]  A. J. Miller,et al.  Factors affecting the detection of trends: Statistical considerations and applications to environmental data , 1998 .

[105]  N. Kenkel Environmental persistence and the structure/composition of northern prairie marshes , 1998 .

[106]  F. Nelson,et al.  Spatial and temporal attributes of the active - layer thickness record , 1998 .

[107]  Konrad A Hughen,et al.  Arctic Environmental Change of the Last Four Centuries , 1997 .

[108]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[109]  J. Wallace,et al.  ENSO-like Interdecadal Variability: 1900–93 , 1997 .

[110]  W. M. Gray,et al.  Climate Trends Associated with Multidecadal Variability of Atlantic Hurricane Activity , 1997 .

[111]  H. Diaz,et al.  Atlantic Hurricanes in the Second Half of the Nineteenth Century , 1996 .

[112]  John R. Lanzante,et al.  Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data , 1996 .

[113]  K. Hinkel,et al.  Detection of heat-mass transfer regime transitions in the active layer using fractal geometric parameters , 1995 .

[114]  Dag Tjøstheim,et al.  Nonparametric tests of linearity for time series , 1995 .

[115]  Tingjun Zhang,et al.  Evidence for a cyclic variation of permafrost temperatures in northern alaska , 1994 .

[116]  James W. Hurrell,et al.  A modulation of the atmospheric annual cycle in the Southern Hemisphere , 1994 .

[117]  Nicholas E. Graham,et al.  The 1976-77 Climate Shift of the Pacific Ocean , 1994 .

[118]  Germán Poveda,et al.  The Hurst Effect: The scale of fluctuation approach , 1993 .

[119]  D. Robinson,et al.  Global Snow Cover Monitoring: An Update , 1993 .

[120]  S. Outcalt,et al.  Geomorphic application of the hausdorff‐besicovich dimension , 1992 .

[121]  D. Parker,et al.  A new daily central England temperature series, 1772–1991 , 1992 .

[122]  David A. Howarth,et al.  PROBLEMS ASSOCIATED WITH SMOOTHING AND FILTERING OF GEOPHYSICAL TIME-SERIES DATA , 1992 .

[123]  C. Folland,et al.  A NEW DAILY CENTRAL ENGLAND TEMPERATURE SERIES , 1992 .

[124]  D. Cayan,et al.  Climate and Chlorophyll a: Long-Term Trends in the Central North Pacific Ocean , 1987, Science.

[125]  V. Klemeš,et al.  Dilettantism in hydrology: Transition or destiny? , 1986 .

[126]  K. Stout Analysis of Variation , 1985 .

[127]  K. Potter Annual precipitation in the northeast United States: Long memory, short memory, or no memory? , 1979 .

[128]  Jose D. Salas,et al.  Nonstationarity of the mean and the hurst Phenomenon , 1978 .

[129]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[130]  A note on the Hurst Phenomenon in turbulent flows , 1977 .

[131]  J. E. Lewis,et al.  URBAN TERRAIN CLIMATOLOGY AND REMOTE SENSING , 1976 .

[132]  Kenneth W. Potter,et al.  Evidence for nonstationarity as a physical explanation of the Hurst Phenomenon , 1976 .

[133]  V. Klemeš The Hurst Phenomenon: A puzzle? , 1974 .

[134]  G. Manley Central England temperatures: Monthly means 1659 to 1973 , 1974 .

[135]  R. Oaxaca Another Look at Tests of Equality between Sets of Coefficients in Two Linear Regressions , 1974 .

[136]  J. R. Wallis,et al.  FIRM RESERVOIR YIELD—HOW RELIABLE ARE HISTORIC HYDROLOGICAL RECORDS? , 1973 .

[137]  H. Fischer A possible explanation for Nordin, McQuivey, and Mejia's Observation of the Hurst Phenomenon in turbulence , 1973 .

[138]  J. M. Mejía,et al.  Hurst phenomenon in turbulence , 1972 .

[139]  S. Outcalt A Reconnaissance Experiment in Mapping and Modeling the Effect of Land Use on Urban Thermal Regimes , 1972 .

[140]  P. Sen Some Non-Parametric Tests for m-dependent Time Series , 1965 .

[141]  M. I. Budyko Evaporation under natural conditions , 1963 .

[142]  D.sc. THE PROBLEM OF LONG-TERM STORAGE IN RESERVOIRS , 1956 .

[143]  H. E. Hurst,et al.  Long-Term Storage Capacity of Reservoirs , 1951 .