Crystal Structure of the Bacterial YhcH Protein Indicates a Role in Sialic Acid Catabolism

ABSTRACT The yhcH gene is part of the nan operon in bacteria that encodes proteins involved in sialic acid catabolism. Determination of the crystal structure of YhcH from Haemophilus influenzae was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. The structure was determined at 2.2-Å resolution by multiple-wavelength anomalous diffraction. The protein fold is a variation of the double-stranded β-helix. Two antiparallel β-sheets form a funnel opened at one side, where a putative active site contains a copper ion coordinated to the side chains of two histidine and two carboxylic acid residues. A comparison to other proteins with a similar fold and analysis of the genomic context suggested that YhcH may be a sugar isomerase involved in processing of exogenous sialic acid.

[1]  Robert D. Finn,et al.  The Pfam protein families database , 2007, Nucleic Acids Res..

[2]  Cathy H. Wu,et al.  The Universal Protein Resource (UniProt) , 2004, Nucleic Acids Res..

[3]  E. Vimr,et al.  Diversity of Microbial Sialic Acid Metabolism , 2004, Microbiology and Molecular Biology Reviews.

[4]  P. Schönheit,et al.  Structural Evidence for a Hydride Transfer Mechanism of Catalysis in Phosphoglucose Isomerase from Pyrococcus furiosus* , 2003, Journal of Biological Chemistry.

[5]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[6]  Jasper Akerboom,et al.  Crystal Structure of Pyrococcus furiosus Phosphoglucose Isomerase , 2003, Journal of Biological Chemistry.

[7]  E. Vimr,et al.  Regulation of Sialic Acid Catabolism by the DNA Binding Protein NanR in Escherichia coli , 2003, Journal of bacteriology.

[8]  Alexey I Nesvizhskii,et al.  Initial Proteome Analysis of Model Microorganism Haemophilus influenzae Strain Rd KW20 , 2003, Journal of bacteriology.

[9]  D. Maskell,et al.  High-resolution structures of RmlC from Streptococcus suis in complex with substrate analogs locate the active site of this class of enzyme. , 2003, Structure.

[10]  J. Montreuil,et al.  Diversity of the human erythrocyte membrane sialic acids in relation with blood groups , 2003, FEBS letters.

[11]  K. H. Kalk,et al.  Anaerobic enzyme⋅substrate structures provide insight into the reaction mechanism of the copper-dependent quercetin 2,3-dioxygenase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  H. Mo,et al.  Modeling and experiment yields the structure of acireductone dioxygenase from Klebsiella pneumoniae , 2002, Nature Structural Biology.

[13]  R. Pickersgill,et al.  Crystal structure of auxin‐binding protein 1 in complex with auxin , 2002, The EMBO journal.

[14]  E. Vimr,et al.  To sialylate, or not to sialylate: that is the question. , 2002, Trends in microbiology.

[15]  P. Dorrestein,et al.  Structure of oxalate decarboxylase from Bacillus subtilis at 1.75 A resolution. , 2002, Biochemistry.

[16]  Tjaard Pijning,et al.  Crystal structure of the copper-containing quercetin 2,3-dioxygenase from Aspergillus japonicus. , 2002, Structure.

[17]  I. G. Bravo,et al.  N‐Acetylneuraminic acid uptake in Pasteurella (Mannheimia) haemolytica A2 occurs by an inducible and specific transport system , 2001, FEBS letters.

[18]  J. Chirgwin,et al.  The crystal structure of human phosphoglucose isomerase at 1.6 A resolution: implications for catalytic mechanism, cytokine activity and haemolytic anaemia. , 2001, Journal of molecular biology.

[19]  Annabel E. Todd,et al.  Evolution of function in protein superfamilies, from a structural perspective. , 2001, Journal of molecular biology.

[20]  F. Bakker,et al.  Phylogeny, function, and evolution of the cupins, a structurally conserved, functionally diverse superfamily of proteins. , 2001, Molecular biology and evolution.

[21]  N. Strynadka,et al.  Structure of a Sialic Acid-activating Synthetase, CMP-acylneuraminate Synthetase in the Presence and Absence of CDP* , 2001, The Journal of Biological Chemistry.

[22]  J. Naismith,et al.  The rhamnose pathway. , 2000, Current opinion in structural biology.

[23]  R. Pickersgill,et al.  Germin is a manganese containing homohexamer with oxalate oxidase and superoxide dismutase activities , 2000, Nature Structural Biology.

[24]  E. Pai,et al.  Crystal Structure of dTDP-4-keto-6-deoxy-d-hexulose 3,5-Epimerase fromMethanobacterium thermoautotrophicum Complexed with dTDP* , 2000, The Journal of Biological Chemistry.

[25]  D. Timm,et al.  Crystal structure of human homogentisate dioxygenase , 2000, Nature Structural Biology.

[26]  Michael Y. Galperin,et al.  Who's your neighbor? New computational approaches for functional genomics , 2000, Nature Biotechnology.

[27]  E. Vimr,et al.  Sialic acid metabolism's dual function in Haemophilus influenzae , 2000, Molecular microbiology.

[28]  J. Naismith,et al.  RmlC, the third enzyme of dTDP-L-rhamnose pathway, is a new class of epimerase , 2000, Nature Structural Biology.

[29]  J. Moult,et al.  Biological function made crystal clear - annotation of hypothetical proteins via structural genomics. , 2000, Current opinion in biotechnology.

[30]  C. Cambillau,et al.  Crystal structure of the bifunctional N‐acetylglucosamine 1‐phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily , 1999, The EMBO journal.

[31]  S. Melville,et al.  Cloning, Sequence, and Transcriptional Regulation of the Operon Encoding a Putative N -Acetylmannosamine-6-Phosphate Epimerase (nanE) and Sialic Acid Lyase (nanA) inClostridium perfringens , 1999, Journal of bacteriology.

[32]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[33]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  E. Vimr,et al.  Convergent Pathways for Utilization of the Amino Sugars N-Acetylglucosamine,N-Acetylmannosamine, and N-Acetylneuraminic Acid by Escherichia coli , 1999, Journal of bacteriology.

[35]  R. Schauer,et al.  Structure, function and metabolism of sialic acids , 1998, Cellular and Molecular Life Sciences CMLS.

[36]  A. Varki,et al.  A structural difference between the cell surfaces of humans and the great apes. , 1998, American journal of physical anthropology.

[37]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[38]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[39]  Edward I. Solomon,et al.  Structural and Functional Aspects of Metal Sites in Biology. , 1996, Chemical reviews.

[40]  R. Hubbard,et al.  The X-ray crystal structure of phosphomannose isomerase from Candida albicans at 1.7 Å resolution , 1996, Nature Structural Biology.

[41]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[42]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[43]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[44]  G. Boulnois,et al.  Molecular cloning and analysis of genes for sialic acid synthesis in Neisseria meningitidis group B and purification of the meningococcal CMP-NeuNAc synthetase enzyme , 1994, Journal of bacteriology.

[45]  Steven M. Gallo,et al.  SnB: crystal structure determination via shake-and-bake , 1994 .

[46]  B. Hall,et al.  The catalytic consequences of experimental evolution. Studies on the subunit structure of the second (ebg) beta-galactosidase of Escherichia coli, and on catalysis by ebgab, an experimental evolvant containing two amino acid substitutions. , 1992, The Biochemical journal.

[47]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[48]  K. Aisaka,et al.  Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli. , 1991, The Biochemical journal.

[49]  K. Bousset,et al.  Evidence for a common molecular origin of the capsule gene loci in Gram‐negative bacteria expressing group II capsular polysaccharides , 1991, Molecular microbiology.

[50]  A. Bairoch PROSITE: a dictionary of sites and patterns in proteins. , 1991, Nucleic acids research.

[51]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[52]  T. Meyer,et al.  Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Barnwell,et al.  Sialoglycoproteins and sialic acids of Plasmodium knowlesi schizont-infected erythrocytes and normal rhesus monkey erythrocytes , 1986, Parasitology.

[54]  E. Vimr,et al.  Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli , 1985, Journal of bacteriology.

[55]  J. Dunwell,et al.  Cupins: the most functionally diverse protein superfamily? , 2004, Phytochemistry.

[56]  Michael Y. Galperin,et al.  Identification and functional analysis of ‘hypothetical’ genes expressed in Haemophilus influenzae , 2004 .

[57]  J. Dunwell Cupins: a new superfamily of functionally diverse proteins that include germins and plant storage proteins. , 1998, Biotechnology & genetic engineering reviews.

[58]  Chris Sander,et al.  Touring protein fold space with Dali/FSSP , 1998, Nucleic Acids Res..

[59]  K. Cowtan Miscellaneous Algorithms for Density Modi®cation , 1998 .

[60]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[61]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[62]  R. Schauer,et al.  Studies on the substrate specificity of acylneuraminate pyruvate-lyase. , 1971, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.