The union of balls and its dual shape

Efficient algorithms are described for computing topological,combinatorial, and metric properties of the union of finitely many ballsin <inline-equation><f><blkbd>R</blkbd><sup>d</sup></f></inline-equation>. These algorithms are based on a simplicial complexdual to a certain decomposition of the union of balls, and on shortinclusion-exclusion formulas derived from this complex. The algorithmsare most relevant in <inline-equation><f><blkbd>R</blkbd><sup>3</sup></f></inline-equation> <?Pub Caret>where unions of finitely many balls arecommonly used as models of molecules.

[1]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[4]  André Well Sur les théorèmes de de Rham , 1952 .

[5]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[6]  M. McCord HOMOTOPY TYPE COMPARISON OF A SPACE WITH COMPLEXES ASSOCIATED WITH ITS OPEN COVERS , 1967 .

[7]  P. Mani,et al.  Shellable Decompositions of Cells and Spheres. , 1971 .

[8]  M. Fuchs A note on mapping cylinders. , 1971 .

[9]  F M Richards,et al.  Areas, volumes, packing and protein structure. , 1977, Annual review of biophysics and bioengineering.

[10]  Ravi Kannan,et al.  Polynomial Algorithms for Computing the Smith and Hermite Normal Forms of an Integer Matrix , 1979, SIAM J. Comput..

[11]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[12]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[13]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[14]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[15]  Franz Aurenhammer,et al.  Improved Algorithms for Discs and Balls Using Power Diagrams , 1988, J. Algorithms.

[16]  Herbert Edelsbrunner,et al.  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.

[17]  Paul D. Domich,et al.  Residual hermite normal form computations , 1989, TOMS.

[18]  Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1990, TOGS.

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  B.R. Donald,et al.  On the complexity of computing the homology type of a triangulation , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[21]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[22]  Herbert Edelsbrunner,et al.  Weighted alpha shapes , 1992 .

[23]  D. Naiman,et al.  INCLUSION-EXCLUSION-BONFERRONI IDENTITIES AND INEQUALITIES FOR DISCRETE TUBE-LIKE PROBLEMS VIA EULER CHARACTERISTICS , 1992 .

[24]  Herbert Edelsbrunner,et al.  An incremental algorithm for Betti numbers of simplicial complexes , 1993, SCG '93.

[25]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..