Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement

[1]  H. G. Armaki,et al.  Strain-induced coarsening of nanoscale precipitates in strength enhanced high Cr ferritic steels , 2012 .

[2]  Kouichi Maruyama,et al.  Long-term microstructural degradation and creep strength in Gr.91 steel , 2011 .

[3]  Kouichi Maruyama,et al.  Premature creep failure in strength enhanced high Cr ferritic steels caused by static recovery of tempered martensite lath structures , 2010 .

[4]  J. Hald,et al.  On the role of Nb in Z-phase formation in a 12% Cr steel , 2010 .

[5]  Kouichi Maruyama,et al.  Cr concentration dependence of overestimation of long term creep life in strength enhanced high Cr ferritic steels , 2010 .

[6]  Yusuke Minami,et al.  Premature Creep Rupture and Overestimation of Rupture Life in Modified 9Cr–1Mo Steel , 2010 .

[7]  J. Hald,et al.  Conversion of MX nitrides to Z-phase in a martensitic 12% Cr steel , 2010 .

[8]  Kouichi Maruyama,et al.  Static recovery of tempered lath martensite microstructures during long-term aging in 9–12% Cr heat resistant steels , 2009 .

[9]  G. Eggeler,et al.  On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel , 2009 .

[10]  Kouichi Maruyama,et al.  Prevention of the overestimation of long-term creep rupture life by multiregion analysis in strength enhanced high Cr ferritic steels , 2008 .

[11]  Fujio Abe,et al.  Creep-resistant Steels , 2008 .

[12]  H. G. Armaki,et al.  Creep Damage Evaluation by Hardness in Advanced High Cr Ferritic Steels , 2007 .

[13]  H. G. Armaki,et al.  Prediction of Breakdown Transition of Creep Strength in Advanced High Cr Ferritic Steels by Hardness Measurement of Aged Structures at High Temperature , 2007 .

[14]  Jae Seung Lee,et al.  Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel , 2006 .

[15]  W. Blum,et al.  Evolution of microstructure and deformation resistance in creep of tempered martensitic 9–12%Cr–2%W–5%Co steels , 2006 .

[16]  S. Fujibayashi,et al.  Hardness Based Creep Life Prediction for 2.25Cr–1Mo Superheater Tubes in a Boiler , 2006 .

[17]  Kazuhiro Kimura,et al.  Effect of Nitrogen Content on Microstructural Aspects and Creep Behavior in Extremely Low Carbon 9Cr Heat-resistant Steel , 2004 .

[18]  F. Masuyama,et al.  Change in Vickers Hardness and Substructure during Creep of a Mod.9Cr-1Mo Steel , 2003 .

[19]  Kouichi Maruyama,et al.  Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel , 2001 .

[20]  Kazuhiro Kimura,et al.  Degradation of Mod.9Cr-1Mo Steel during Long-term Creep Deformation , 1999 .

[21]  Kouichi Maruyama,et al.  Creep Life Assessment of High Chromium Ferritic Steels by Recovery of Martensitic Lath Structure , 1999 .

[22]  W. Blum,et al.  Evolution of dislocation structure in martensitic steels : the subgrain size as a sensor for creep strain and residual creep life , 1999 .

[23]  A. Strang,et al.  Z phase formation in martensitic 12CrMoVNb steel , 1996 .

[24]  B. J. Cane,et al.  Remaining creep life estimation by strain assessment on plant , 1982 .