Representing and Aggregating Conflicting Beliefs

We consider the two-fold problem of representing collective beliefs and aggregating these beliefs. We propose a novel representation for collective beliefs that uses modular, transitive relations over possible worlds. They allow us to represent conflicting opinions and they have a clear semantics, thus improving upon the quasi-transitive relations often used in social choice. We then describe a way to construct the belief state of an agent informed by a set of sources of varying degrees of reliability. This construction circumvents Arrow’s Impossibility Theorem in a satisfactory manner by accounting for the explicitly encoded conflicts. We give a simple set-theory-based operator for combining the information of multiple agents. We show that this operator satisfies the desirable invariants of idempotence, commutativity, and associativity, and, thus, is well-behaved when iterated, and we describe a computationally eective way of computing the resulting belief state. Finally, we extend our framework to incorporate voting.

[1]  Mary-Anne Williams,et al.  Transmutations of Knowledge Systems , 1994, KR.

[2]  Benjamin N. Grosof,et al.  Generalizing Prioritization , 1991, KR.

[3]  Peter Gärdenfors,et al.  Nonmonotonic Inference Based on Expectations , 1994, Artif. Intell..

[4]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[5]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[6]  Adam J. Grove,et al.  Two modellings for theory change , 1988, J. Philos. Log..

[7]  John Cantwell,et al.  Resolving Conflicting Information , 1998, J. Log. Lang. Inf..

[8]  Thomas Christiano Voting and democracy , 1995 .

[9]  Yoav Shoham,et al.  Belief Fusion: Aggregating Pedigreed Belief States , 2001, J. Log. Lang. Inf..

[10]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[11]  K. Arrow,et al.  Social Choice and Individual Values , 1951 .

[12]  F. Ramsey The Foundations of Mathematics and Other Logical Essays , 2001 .

[13]  Thomas Andreas Meyer,et al.  Social Choice, Merging, and Elections , 2001, ECSQARU.

[14]  Thomas Andreas Meyer On the semantics of combination operations , 2001, J. Appl. Non Class. Logics.

[15]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[16]  Sébastien Konieczny,et al.  On the Logic of Merging , 1998, KR.

[17]  Marco Schaerf,et al.  Arbitration: A Commutative Operator for Belief Revision , 1995, WOCFAI.

[18]  Alexander Borgida,et al.  Decision Making in Commitees - A Framework for Dealing with Inconsistency and Non-Monotonicity , 1984, NMR.

[19]  Peter Gärdenfors,et al.  Belief Revision , 1995 .

[20]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[21]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[22]  Hirofumi Katsuno,et al.  Propositional Knowledge Base Revision and Minimal Change , 1991, Artif. Intell..

[23]  Pierre-Yves Schobbens,et al.  Operators and Laws for Combining Preference Relations , 2002, J. Log. Comput..

[24]  David M. Kreps,et al.  A Course in Microeconomic Theory , 2020 .

[25]  Craig Boutilier,et al.  Iterated revision and minimal change of conditional beliefs , 1996, J. Philos. Log..

[26]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[27]  D. Black The theory of committees and elections , 1959 .

[28]  Judea Pearl,et al.  On the Logic of Iterated Belief Revision , 1994, Artif. Intell..

[29]  Peter Z. Revesz,et al.  On the Semantics of Arbitration , 1997, Int. J. Algebra Comput..

[30]  P. Fishburn,et al.  Voting Procedures , 2022 .

[31]  Daniel Lehmann,et al.  Belief Revision, Revised , 1995, IJCAI.

[32]  Peter C. Fishburn,et al.  LEXICOGRAPHIC ORDERS, UTILITIES AND DECISION RULES: A SURVEY , 1974 .