Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors

UNLABELLED Depressive short-term synaptic plasticity functions are implemented with a simple polymer poly(3,4ethylenedioxythiophene):poly(styrene sulfonate) ( PEDOT PSS) organic electrochemical transistor device. These functions are a first step toward the realization of organic-based neuroinspired platforms with spatiotemporal information processing capabilities.

[1]  Christophe Bernard,et al.  High-performance transistors for bioelectronics through tuning of channel thickness , 2015, Science Advances.

[2]  Róisín M. Owens,et al.  The organic electrochemical transistor for biological applications , 2015 .

[3]  T. Berzina,et al.  A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties , 2015, Chemical science.

[4]  Qing Wan,et al.  Simulation of Laterally Coupled InGaZnO4-Based Electric-Double-Layer Transistors for Synaptic Electronics , 2015, IEEE Electron Device Letters.

[5]  Bjorn Winther-Jensen,et al.  New one-pot poly(3,4-ethylenedioxythiophene): poly(tetrahydrofuran) memory material for facile fabrication of memory organic electrochemical transistors , 2015 .

[6]  Salvatore Iannotta,et al.  A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor , 2015 .

[7]  Johannes C. Brendel,et al.  A High Transconductance Accumulation Mode Electrochemical Transistor , 2014, Advanced materials.

[8]  Rylan Kautz,et al.  Two‐Terminal Protonic Devices with Synaptic‐Like Short‐Term Depression and Device Memory , 2014, Advanced materials.

[9]  Guodong Wu,et al.  Chitosan-based biopolysaccharide proton conductors for synaptic transistors on paper substrates , 2014 .

[10]  M. Malmierca,et al.  Adaptation in the auditory system: an overview , 2014, Front. Integr. Neurosci..

[11]  George G. Malliaras,et al.  The Rise of Organic Bioelectronics , 2014 .

[12]  Yi Shi,et al.  Artificial synapse network on inorganic proton conductor for neuromorphic systems , 2013, Nature Communications.

[13]  Li Qiang Zhu,et al.  Memory and learning behaviors mimicked in nanogranular SiO2-based proton conductor gated oxide-based synaptic transistors. , 2013, Nanoscale.

[14]  Shimeng Yu,et al.  Synaptic electronics: materials, devices and applications , 2013, Nanotechnology.

[15]  Manfred Lindau,et al.  Direct Measurement of Ion Mobility in a Conducting Polymer , 2013, Advanced materials.

[16]  F. Zeng,et al.  Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system , 2013 .

[17]  P. Leleux,et al.  High transconductance organic electrochemical transistors , 2013, Nature Communications.

[18]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[19]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[20]  Wade G Regehr,et al.  Short-term forms of presynaptic plasticity , 2011, Current Opinion in Neurobiology.

[21]  Zhiyong Li,et al.  Ionic/Electronic Hybrid Materials Integrated in a Synaptic Transistor with Signal Processing and Learning Functions , 2010, Advanced materials.

[22]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[23]  M. Berggren,et al.  Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. , 2009, Nature materials.

[24]  S E Moulton,et al.  Electrode-Cellular Interface , 2009, Science.

[25]  J. Rothman,et al.  Synaptic depression enables neuronal gain control , 2009, Nature.

[26]  George G. Malliaras,et al.  Steady‐State and Transient Behavior of Organic Electrochemical Transistors , 2007 .

[27]  Göran Gustafsson,et al.  Low‐Voltage Polymer Field‐Effect Transistors Gated via a Proton Conductor , 2007 .

[28]  Nektarios Tavernarakis,et al.  The role of synaptic ion channels in synaptic plasticity , 2006, EMBO reports.

[29]  M. Hollins,et al.  Somatosensory Coding of Roughness: The Effect of Texture Adaptation in Direct and Indirect Touch , 2006, The Journal of Neuroscience.

[30]  William J Spain,et al.  Synaptic depression as a timing device. , 2005, Physiology.

[31]  Nicholas J Priebe,et al.  A New Mechanism for Neuronal Gain Control (or How the Gain in Brains Has Mainly Been Explained) , 2002, Neuron.

[32]  S. Nelson,et al.  Short-Term Depression at Thalamocortical Synapses Contributes to Rapid Adaptation of Cortical Sensory Responses In Vivo , 2002, Neuron.

[33]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[34]  E. Fortune,et al.  Short-Term Synaptic Plasticity Contributes to the Temporal Filtering of Electrosensory Information , 2000, The Journal of Neuroscience.

[35]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[36]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[37]  Henry S. White,et al.  Chemical derivatization of an array of three gold microelectrodes with polypyrrole: Fabrication of a molecule-based transistor , 1984 .

[38]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.