Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes
暂无分享,去创建一个
Jacques Janssen | Raimondo Manca | Fulvio Gismondi | Guglielmo D’Amico | J. Janssen | G. D’Amico | R. Manca | F. Gismondi
[1] F. Riesz,et al. Les systèmes d'équations linéaires : a une infinité d'inconnues , 1952 .
[2] An algebraic treatment of fluctuations of sums of random variables , 1967 .
[3] History of Actuarial Science , 1995 .
[4] Tak Kuen Siu,et al. Markov Chains: Models, Algorithms and Applications , 2006 .
[5] Jac J. Janssen,et al. Probabilités de Ruine pour une Classe de Modèles de Risque Semi-Markoviens , 1985, ASTIN Bulletin.
[6] Jacques Janssen,et al. Applied Semi-Markov Processes , 2005 .
[7] D. Hernández-Hernández,et al. A characterization of the optimal risk-sensitive average cost in finite controlled Markov chains , 2005, math/0503478.
[8] P. Embrechts,et al. Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .
[9] S. Asmussen. Risk theory in a Markovian environment , 1989 .
[10] J. Janssen,et al. Mathematical Finance: Deterministic and Stochastic Models , 2009 .
[11] William H. Sanders,et al. Reward Model Solution Methods with Impulse and Rate Rewards: An Algorithm and Numerical Results , 1994, Perform. Evaluation.
[12] Some Transient Results on the M/SM/1 Special Semi-Markov Model in Risk and Queueing Theories , 1980, ASTIN Bulletin.
[13] J. Janssen,et al. Semi-Markov Risk Models for Finance, Insurance and Reliability , 2007 .
[14] Thomas Mikosch,et al. Non-Life Insurance Mathematics: An Introduction with the Poisson Process , 2006 .
[15] R. D. Carmichael. Review: Frédéric Riesz, Les Systèmes d'Équations linéaires a une Infinité d'Inconnues , 1914 .
[16] Sean P. Meyn,et al. Risk-Sensitive Optimal Control for Markov Decision Processes with Monotone Cost , 2002, Math. Oper. Res..
[17] Harald Cramér,et al. Collective risk theory , 1955 .
[18] Tomasz Rolski,et al. Stochastic Processes for Insurance and Finance , 2001 .
[19] T. Rolski. Stochastic Processes for Insurance and Finance , 1999 .
[20] H. Cramér. On the Mathematical Theory of Risk , 1994 .
[21] J. Reinhard,et al. On a Class of Semi-Markov Risk Models Obtained as Classical Risk Models in a Markovian Environment , 1984, ASTIN Bulletin.
[22] R. Howard,et al. Risk-Sensitive Markov Decision Processes , 1972 .