Signature of Geometric Centroids for 3D Local Shape Description and Partial Shape Matching

Depth scans acquired from different views may contain nuisances such as noise, occlusion, and varying point density. We propose a novel Signature of Geometric Centroids descriptor, supporting direct shape matching on the scans, without requiring any preprocessing such as scan denoising or converting into a mesh. First, we construct the descriptor by voxelizing the local shape within a uniquely defined local reference frame and concatenating geometric centroid and point density features extracted from each voxel. Second, we compare two descriptors by employing only corresponding voxels that are both non-empty, thus supporting matching incomplete local shape such as those close to scan boundary. Third, we propose a descriptor saliency measure and compute it from a descriptor-graph to improve shape matching performance. We demonstrate the descriptor’s robustness and effectiveness for shape matching by comparing it with three state-of-the-art descriptors, and applying it to object/scene reconstruction and 3D object recognition.

[1]  Niloy J. Mitra,et al.  Super4PCS: Fast Global Pointcloud Registration via Smart Indexing , 2019 .

[2]  Chao-Hung Lin,et al.  A graph‐based shape matching scheme for 3D articulated objects , 2011, Comput. Animat. Virtual Worlds.

[3]  Mohammed Bennamoun,et al.  Rotational Projection Statistics for 3D Local Surface Description and Object Recognition , 2013, International Journal of Computer Vision.

[4]  Andrea Torsello,et al.  Loosely Distinctive Features for Robust Surface Alignment , 2010, ECCV.

[5]  Iasonas Kokkinos,et al.  Intrinsic shape context descriptors for deformable shapes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[7]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Luigi di Stefano,et al.  On the repeatability of the local reference frame for partial shape matching , 2011, 2011 International Conference on Computer Vision.

[9]  Xuming He,et al.  Superpixel Graph Label Transfer with Learned Distance Metric , 2014, ECCV.

[10]  Bernt Schiele,et al.  3D object recognition from range images using local feature histograms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Daniel Cohen-Or,et al.  4-points congruent sets for robust pairwise surface registration , 2008, ACM Trans. Graph..

[12]  Xulei Wang,et al.  Global and local isometry-invariant descriptor for 3D shape comparison and partial matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Daniel Cohen-Or,et al.  Salient geometric features for partial shape matching and similarity , 2006, TOGS.

[14]  Mohammed Bennamoun,et al.  Three-Dimensional Model-Based Object Recognition and Segmentation in Cluttered Scenes , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Aly A. Farag,et al.  Surfacing Signatures: An Orientation Independent Free-Form Surface Representation Scheme for the Purpose of Objects Registration and Matching , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Peng Song Local voxelizer: A shape descriptor for surface registration , 2015, Computational Visual Media.

[17]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[18]  Yu Zhong,et al.  Intrinsic shape signatures: A shape descriptor for 3D object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[19]  Xiaogang Wang,et al.  Shape and Appearance Context Modeling , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  Taku Komura,et al.  Topology matching for fully automatic similarity estimation of 3D shapes , 2001, SIGGRAPH.

[21]  Daniel Cremers,et al.  Partial Functional Correspondence , 2017 .

[22]  Andrew E. Johnson,et al.  Spin-Images: A Representation for 3-D Surface Matching , 1997 .

[23]  Johannes Wallner,et al.  Integral invariants for robust geometry processing , 2009, Comput. Aided Geom. Des..

[24]  Peng Song,et al.  Pairwise Surface Registration Using Local Voxelizer , 2015, PG.

[25]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[26]  Adam Finkelstein,et al.  The Generalized PatchMatch Correspondence Algorithm , 2010, ECCV.

[27]  Mohammed Bennamoun,et al.  A Comprehensive Performance Evaluation of 3D Local Feature Descriptors , 2015, International Journal of Computer Vision.

[28]  Ko Nishino,et al.  Scale-hierarchical 3D object recognition in cluttered scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Mohammed Bennamoun,et al.  A novel local surface feature for 3D object recognition under clutter and occlusion , 2015, Inf. Sci..

[30]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[32]  Mohammed Bennamoun,et al.  3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Mohammed Bennamoun,et al.  A Novel Representation and Feature Matching Algorithm for Automatic Pairwise Registration of Range Images , 2005, International Journal of Computer Vision.

[34]  Hayko Riemenschneider,et al.  Efficient Partial Shape Matching of Outer Contours , 2009, ACCV.

[35]  Babak Taati,et al.  Local shape descriptor selection for object recognition in range data , 2011, Comput. Vis. Image Underst..