Journal of Cerebral Blood Flow and Metabolism Calcium Accumulation and Neuronal Damage in the Rat Hippocampus following Cerebral Ischemia Operative Procedures

[1]  T. Wieloch Neurochemical correlates to selective neuronal vulnerability. , 1985, Progress in brain research.

[2]  B. Siesjö,et al.  Cerebral metabolism in ischaemia: neurochemical basis for therapy. , 1985, British journal of anaesthesia.

[3]  H. Benveniste,et al.  Elevation of the Extracellular Concentrations of Glutamate and Aspartate in Rat Hippocampus During Transient Cerebral Ischemia Monitored by Intracerebral Microdialysis , 1984, Journal of neurochemistry.

[4]  G. Dienel Regional Accumulation of Calcium in Postischemic Rat Brain , 1984, Journal of neurochemistry.

[5]  I. Chaudry,et al.  ATP-MgCl2 produces sustained improvement in hepatic mitochondrial function and blood flow after hepatic ischemia. , 1984, The Journal of surgical research.

[6]  B. Meldrum,et al.  Calcium Overload in Selectively Vulnerable Neurons of the Hippocampus during and after Ischemia: An Electron Microscopy Study in the Rat , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  B. Siesjö,et al.  Models for studying long‐term recovery following forebrain ischemia in the rat. 2. A 2‐vessel occlusion model , 1984, Acta neurologica Scandinavica.

[8]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[9]  W. Paschen,et al.  Relationship between Calcium Accumulation and Recovery of Cat Brain after Prolonged Cerebral Ischemia , 1983, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[10]  H. Rasmussen,et al.  Modulation of Cell Function in the Calcium Messenger System , 1983 .

[11]  D. Nicholls,et al.  Physiological and bioenergetic aspects of mitochondrial calcium transport , 1983 .

[12]  T. Yanagihara,et al.  Ionic shift in cerebral ischemia. , 1982, Life sciences.

[13]  Fred Plum,et al.  Temporal profile of neuronal damage in a model of transient forebrain ischemia , 1982, Annals of neurology.

[14]  B. Siesjö Cell Damage in the Brain: A Speculative Synthesis , 1981, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  J. Farber,et al.  Calcium dependence of toxic cell death: a final common pathway. , 1979, Science.

[16]  M. Salpeter,et al.  Agonist-induced myopathy at the neuromuscular junction is mediated by calcium , 1979, The Journal of cell biology.

[17]  Grace Y Sun,et al.  METABOLISM OF ARACHIDONOYL PHOSPHOGLYCERIDES IN MOUSE BRAIN SUBCELLULAR FRACTIONS , 1979, Journal of neurochemistry.

[18]  A. Fleckenstein Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. , 1977, Annual review of pharmacology and toxicology.

[19]  K. Wrogemann,et al.  MITOCHONDRIAL CALCIUM OVERLOAD: A GENERAL MECHANISM FOR CELL-NECROSIS IN MUSCLE DISEASES , 1976, The Lancet.

[20]  L. Salford,et al.  OPTIMAL FREEZING CONDITIONS FOR CEREBRAL METABOLITES IN RATS , 1973, Journal of neurochemistry.

[21]  S Ferrer,et al.  Cerebral Hypoxia , 2019, Definitions.

[22]  M. Bradbury,et al.  The calcium and magnesium content of skeletal muscle, brain, and cerebrospinal fluid as determined by atomic bsorption flame photometry. , 1968, The Journal of laboratory and clinical medicine.

[23]  G. Guroff,et al.  A NEUTRAL, CALCIUM-ACTIVATED PROTEINASE FROM THE SOLUBLE FRACTION OF RAT BRAIN. , 1964, The Journal of biological chemistry.