EXTENSIONS IN REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA ARE EQUIVALENT WITH THE FULL SHIFT
暂无分享,去创建一个
Juan Carlos Seck Tuoh Mora | Genaro J. Martínez | Sergio V. Chapa Vergara | Manuel González Hernáandez
[1] Masakazu Nasu,et al. Local maps inducing surjective global maps of one-dimensional tessellation automata , 1977, Mathematical systems theory.
[2] G. Rozenberg,et al. Lindenmayer Systems: Impacts on Theoretical Computer Science, Computer Graphics, and Developmental Biology , 2001 .
[3] Masakazu Nasu. Uniformly finite-to-one and onto extensions of homomorphisms between strongly connected graphs , 1982, Discret. Math..
[4] H. Moraal,et al. Graph-theoretical characterization of invertible cellular automata , 2000 .
[5] Serafino Amoroso,et al. Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..
[6] Micha A. Perles,et al. The Theory of Definite Automata , 1963, IEEE Trans. Electron. Comput..
[7] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.
[8] David Hillman. The structure of reversible one-dimensional cellular automata , 1991 .