Bifurcation of Nonlinear Bloch Waves from the Spectrum in the Gross–Pitaevskii Equation

We rigorously analyze the bifurcation of stationary so-called nonlinear Bloch waves (NLBs) from the spectrum in the Gross–Pitaevskii (GP) equation with a periodic potential, in arbitrary space dimensions. These are solutions which can be expressed as finite sums of quasiperiodic functions and which in a formal asymptotic expansion are obtained from solutions of the so-called algebraic coupled mode equations. Here we justify this expansion by proving the existence of NLBs and estimating the error of the formal asymptotics. The analysis is illustrated by numerical bifurcation diagrams, mostly in 2D. In addition, we illustrate some relations of NLBs to other classes of solutions of the GP equation, in particular to so-called out-of-gap solitons and truncated NLBs, and present some numerical experiments concerning the stability of these solutions.

[1]  Yuri S. Kivshar,et al.  Bose-Einstein condensates in optical lattices: Band-gap structure and solitons , 2003 .

[2]  Biao Wu,et al.  Composition relation between gap solitons and Bloch waves in nonlinear periodic systems. , 2009, Physical review letters.

[3]  Biao Wu,et al.  Composition Relation between Gap Solitons and Bloch Waves in Nonlinear Periodic Systems , 2009 .

[4]  Tomás Dohnal,et al.  Coupled-Mode Equations and Gap Solitons in a Two-Dimensional Nonlinear Elliptic Problem with a Separable Periodic Potential , 2007, J. Nonlinear Sci..

[5]  S. M. Sun,et al.  Exponentially small estimate for a generalized solitary wave solution to the perturbed K-dV equation , 1994 .

[6]  Alejandro B. Aceves,et al.  Optical gap solitons: Past, present, and future; theory and experiments. , 2000, Chaos.

[7]  L. Hörmander The Analysis of Linear Partial Differential Operators III , 2007 .

[8]  G. Burton Sobolev Spaces , 2013 .

[9]  Daniel Wetzel,et al.  pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems , 2012, 1208.3112.

[10]  Mordechai Segev,et al.  Two-dimensional optical lattice solitons. , 2003, Physical review letters.

[11]  Michael I. Weinstein,et al.  Band-Edge Solitons, Nonlinear Schrödinger/Gross-Pitaevskii Equations, and Effective Media , 2010, Multiscale Model. Simul..

[12]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[13]  Rachel J. Steiner,et al.  The spectral theory of periodic differential equations , 1973 .

[14]  Dmitry E. Pelinovsky,et al.  Loops of Energy Bands for Bloch Waves in Optical Lattices , 2012 .

[15]  Gadi Fibich,et al.  The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse , 2015 .

[16]  Dmitry V. Skryabin,et al.  Out-of-gap Bose-Einstein solitons in optical lattices , 2003 .

[17]  D. G. Figueiredo,et al.  Topics in nonlinear functional analysis , 1967 .

[18]  Ulf Peschel,et al.  Optical gap solitons and truncated nonlinear Bloch waves in temporal lattices. , 2012, Physical review letters.

[19]  Zuoqiang Shi,et al.  Linear instability of two-dimensional low-amplitude gap solitons near band edges in periodic media , 2008 .

[20]  Lars Hr̲mander,et al.  The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators , 1985 .

[21]  Jianke Yang,et al.  Fully localized two-dimensional embedded solitons , 2010, 1010.5813.

[22]  Gadi Fibich,et al.  The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse , 2015 .

[23]  E. Arimondo,et al.  Experimental properties of Bose-Einstein condensates in one-dimensional optical lattices: Bloch oscillations, Landau-Zener tunneling, and mean-field effects , 2002 .

[24]  Y. Kivshar,et al.  Nonlinear guided waves and spatial solitons in a periodic layered medium , 2001, nlin/0105073.

[25]  Yuri S. Kivshar,et al.  Truncated-Bloch-wave solitons in optical lattices , 2009 .

[26]  Jianke Yang,et al.  Families of vortex solitons in periodic media , 2008, 0802.0285.

[27]  Kestutis Staliunas,et al.  Radiation from band-gap solitons , 2012 .

[28]  Jianke Yang,et al.  Nonlinear Waves in Integrable and Nonintegrable Systems , 2010, Mathematical modeling and computation.

[29]  Tomás Dohnal Traveling Solitary Waves in the Periodic Nonlinear Schrödinger Equation with Finite Band Potentials , 2014, SIAM J. Appl. Math..

[30]  Michael I. Weinstein,et al.  Honeycomb Lattice Potentials and Dirac Points , 2012, 1202.3839.

[31]  Elisabeth Blank,et al.  Families of Surface Gap Solitons and Their Stability via the Numerical Evans Function Method , 2009, SIAM J. Appl. Dyn. Syst..

[32]  Robert S. Maier,et al.  Lamé polynomials, hyperelliptic reductions and Lamé band structure , 2003, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Hannes Uecker,et al.  Coupled Mode Equations and Gap Solitons for the 2D Gross-Pitaevskii equation with a non-separable periodic potential , 2008, 0810.4499.

[34]  Guenbo Hwang,et al.  Gap solitons and their linear stability in one-dimensional periodic media , 2011 .

[35]  Y. Kivshar,et al.  Self-trapped nonlinear matter waves in periodic potentials. , 2006, Physical review letters.

[36]  Kurt Busch,et al.  Justification of the nonlinear Schrödinger equation in spatially periodic media , 2006 .

[37]  J. Boyd Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics , 1998 .

[38]  Zuoqiang Shi,et al.  Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. Salerno,et al.  Modulational instability in Bose-Einstein condensates in optical lattices , 2002 .

[40]  Alexander S. Kovalev,et al.  Gap and out-gap solitons in modulated systems of finite length: exact solutions in the slowly varying envelope limit , 2011 .

[41]  Z. Mei Numerical Bifurcation Analysis for Reaction-Diffusion Equations , 2000 .