Singular double-phase systems with variable growth for the Baouendi-Grushin operator

In this paper we study a class of singular systems with double-phase energy. The main feature is that the associated Euler equation is driven by the Baouendi-Grushin operator with variable coefficient. In such a way, we continue the analysis introduced in [ 6 ] to the case of lack of compactness corresponding to the whole Euclidean space. After establishing a related compactness property, we establish the existence of solutions for the Baouendi-Grushin singular system.

[1]  Nikolaos S. Papageorgiou,et al.  Nonlinear singular problems with indefinite potential term , 2019, Analysis and Mathematical Physics.

[2]  Vicentiu D. Rădulescu Nonlinear elliptic equations with variable exponent: Old and new , 2015 .

[3]  Dušan D. Repovš,et al.  Existence and nonexistence of solutions for p(x)-curl systems arising in electromagnetism , 2017, 1712.01135.

[4]  Dušan D. Repovš,et al.  Double-phase problems with reaction of arbitrary growth , 2018, Zeitschrift für angewandte Mathematik und Physik.

[5]  B. Abdellaoui,et al.  On quasilinear elliptic equations related to some Caffarelli-Kohn-Nirenberg inequalities , 2003 .

[6]  Dušan D. Repovš,et al.  A weighted anisotropic variant of the Caffarelli–Kohn–Nirenberg inequality and applications , 2018, 1803.05687.

[7]  Michael A. Coco Biorthogonal systems in Banach spaces , 2003 .

[8]  Matija Cencelj,et al.  Double phase problems with variable growth , 2018, Nonlinear Analysis.

[9]  G. Mingione,et al.  Lipschitz Bounds and Nonuniform Ellipticity , 2019, Communications on Pure and Applied Mathematics.

[10]  M. Squassina,et al.  Eigenvalues for double phase variational integrals , 2015, 1507.01959.

[11]  Dušan D. Repovš,et al.  Existence and multiplicity of solutions for double‐phase Robin problems , 2020, Bulletin of the London Mathematical Society.

[12]  Robert V. Kohn,et al.  First order interpolation inequalities with weights , 1984 .

[13]  Nikolaos S. Papageorgiou,et al.  Double-phase problems and a discontinuity property of the spectrum , 2019, Proceedings of the American Mathematical Society.

[14]  M. S. Baouendi Sur une classe d'opérateurs elliptiques dégénérés , 1967 .

[15]  Nikolaos S. Papageorgiou,et al.  Positive solutions for singular (p, 2)-equations , 2019, Zeitschrift für angewandte Mathematik und Physik.

[16]  Adimurthi,et al.  An improved Hardy-Sobolev inequality and its application , 2001 .

[17]  Dušan D. Repovš,et al.  Ground state and nodal solutions for a class of double phase problems , 2019, Zeitschrift für angewandte Mathematik und Physik.

[18]  Patrizia Pucci,et al.  Multiplicity of solutions for p ( x ) -polyharmonic elliptic Kirchhoff equations , 2011 .

[19]  Vicentiu D. Rădulescu,et al.  Double phase anisotropic variational problems and combined effects of reaction and absorption terms , 2018, Journal de Mathématiques Pures et Appliquées.

[20]  Vicentiu D. Rădulescu Isotropic and anisotropic double-phase problems: old and new , 2019, Opuscula Mathematica.

[21]  Vicentiu D. Rădulescu,et al.  Fractional double-phase patterns: concentration and multiplicity of solutions , 2020 .

[22]  G. Mingione,et al.  Bounded Minimisers of Double Phase Variational Integrals , 2015 .

[23]  Dušan D. Repovš,et al.  Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves , 2019, Nonlinearity.

[24]  G. Mingione,et al.  Non-autonomous functionals, borderline cases and related function classes , 2016 .

[25]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[26]  Vicentiu D. Rădulescu,et al.  Double phase problems with variable growth and convection for the Baouendi–Grushin operator , 2020, Zeitschrift für angewandte Mathematik und Physik.

[27]  Bruno Franchi,et al.  A finite element approximation for a class of degenerate elliptic equations , 2000, Math. Comput..