Optimizing a constrained convex polygonal annulus

In this paper we give solutions to several constrained polygon annulus placement problems for offset and scaled polygons, providing new efficient primitive operations for computational metrology and dimensional tolerancing. Given a convex polygon P and a planar point set S, the goal is to find the thinnest annulus region of P containing S. Depending on the application, there are several ways this problem can be constrained. In the variants that we address the size of the polygon defining the inner (respectively, outer) boundary of the annulus is fixed, and the annulus is minimized by minimizing (respectively, maximizing) the outer (respectively, inner) boundary. We also provide solutions to a related known problem: finding the smallest homothetic copy of a polygon containing a set of points. For all of these problems, we solve for the cases where smallest and largest are defined by either the offsetting or scaling of a polygon. We also provide some experimental results from implementations of several competing approaches to a primitive operation important to all the above variants: finding the intersection of n copies of a convex polygon.  2003 Elsevier B.V. All rights reserved.

[1]  Timothy M. Chan Optimal output-sensitive convex hull algorithms in two and three dimensions , 1996, Discret. Comput. Geom..

[2]  Timothy M. Chan Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus , 2002, Int. J. Comput. Geom. Appl..

[3]  David G. Kirkpatrick,et al.  A compact piecewise-linear voronoi diagram for convex sites in the plane , 1996, Discret. Comput. Geom..

[4]  J. O´Rourke,et al.  Computational Geometry in C: Arrangements , 1998 .

[5]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[6]  Kurt Mehlhorn,et al.  A complete roundness classification procedure , 1997, SCG '97.

[7]  Micha Sharir,et al.  Exact and Approximation Algorithms for Minimum-Width Cylindrical Shells , 2000, SODA '00.

[8]  Joseph ORourke,et al.  Computational Geometry in C Second Edition , 1998 .

[9]  Gill Barequet,et al.  Translating a Convex Polygon to Contain a Maximum Number of Points , 1997, Comput. Geom..

[10]  Michael T. Goodrich,et al.  Offset-polygon annulus placement problems , 1997, Comput. Geom..

[11]  Moon-Kyu Lee,et al.  A new convex-hull based approach to evaluating flatness tolerance , 1997, Comput. Aided Des..

[12]  Prosenjit Bose,et al.  Computing constrained minimum-width annuli of point sets , 1998, Comput. Aided Des..

[13]  Franz Aurenhammer,et al.  A Novel Type of Skeleton for Polygons , 1996 .

[14]  Franz Aurenhammer,et al.  Straight Skeletons for General Polygonal Figures in the Plane , 1996, COCOON.

[15]  Michiel H. M. Smid,et al.  On the width and roundness of a set of points in the plane , 1999, Int. J. Comput. Geom. Appl..

[16]  Prosenjit Bose,et al.  Testing the Quality of Manufactured Disks and Balls , 2003, Algorithmica.

[17]  Hermann A. Maurer,et al.  New Results and New Trends in Computer Science , 1991, Lecture Notes in Computer Science.

[18]  D. T. Lee,et al.  An Optimal Algorithm for Roundness Determination on Convex Polygons , 1995, Comput. Geom..

[19]  Leonidas J. Guibas,et al.  The Robot Localization Problem , 1995, SIAM J. Comput..

[20]  Derick Wood,et al.  Voronoi Diagrams Based on General Metrics in the Plane , 1988, STACS.

[21]  Marek Teichmann,et al.  Smallest enclosing cylinders , 1996, SCG '96.

[22]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[23]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[24]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[25]  Kennan T. Smith,et al.  Linear Topological Spaces , 1966 .

[26]  Vijay Srinivasan,et al.  Proceedings of the 1993 International Forum on Dimensional Tolerancing and Metrology : presented at the 1993 International Forum on Dimensional Tolerancing and Metrology, Dearborn, Michigan, JUne 17-19, 1993 , 1993 .

[27]  Franco P. Preparata,et al.  Evaluating the cylindricity of a nominally cylindrical point set , 2000, SODA '00.

[28]  Prosenjit Bose,et al.  Testing the Quality of Manufactured Balls , 1999, WADS.

[29]  Jean-Daniel Boissonnat,et al.  Algorithmic Foundations of Robotics V, Selected Contributions of the Fifth International Workshop on the Algorithmic Foundations of Robotics, WAFR 2002, Nice, France, December 15-17, 2002 , 2004, WAFR.

[30]  Robert L. Scot Drysdale,et al.  Voronoi diagrams based on convex distance functions , 1985, SCG '85.

[31]  David G. Kirkpatrick,et al.  Tentative Prune-and-Search for Computing Fixed-Points with Applications to Geometric Computation , 1995, Fundam. Informaticae.

[32]  Pedro Ramos,et al.  Computing roundness is easy if the set is almost round , 1999, SCG '99.

[33]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[34]  Michael T. Goodrich,et al.  Efficient approximation and optimization algorithms for computational metrology , 1997, SODA '97.

[35]  D. T. Lee,et al.  Out-of-Roundness Problem Revisited , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  David G. Kirkpatrick,et al.  The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..

[37]  Joseph O'Rourke,et al.  Computational Geometry in C. , 1995 .

[38]  Michael T. Goodrich,et al.  Voronoi Diagrams for Polygon-Offset Distance Functions , 1997, WADS.

[39]  Michael T. Goodrich,et al.  Voronoi diagrams for convex polygon-offset distance functions , 2001, Discret. Comput. Geom..