A Study on Frequency Planning of MN System for 5G Vehicular Communications

Recently in Korea, a research project has been launched to develop Moving Network (MN) system, which is a millimeter-wave (mmWave)-band vehicular communications system aiming to provide public transportation (e.g., city buses, express buses) with broadband mobile wireless backhaul (MWB). The MN system is designed to operate in Flexible Access Common Spectrum (FACS), which is the unlicensed band of 22-23.6 GHz that has been designated by the Korean government, thereby allowing onboard passengers to use Gigabit Wi-Fi for free. Although it is possible to utilize a very high bandwidth of 1.6 GHz in FACS, it is necessary to investigate the proper frequency planning (FP) for MN system that can effectively mitigate inter-cell interference (ICI) so as to optimize the system performance. For this reason, in this paper, we investigate three different FP strategies for MN system and conduct a simple performance evaluation. Simulation results show that as inter-site distance (ISD) gets closer, the reverse frequency reuse (R-FR)-based FP achieves better signal-to-interference-plus-noise ratio (SINR) and capacity performances than the other FPs.

[1]  Youngnam Han,et al.  Overview of Moving Network System for 5G Vehicular Communications , 2019, 2019 13th European Conference on Antennas and Propagation (EuCAP).