Envelopes of nonlinear geometry

A general framework for comparing objects commonly used to represent nonlinear geometry with simpler, related objects, most notably their control polygon, is provided. The framework enables the efficient computation of bounds on the distance between the nonlinear geometry and the simpler objects and the computation of envelopes of nonlinear geometry. The framework is used to compute envelopes for univariate splines, the four point subdivision scheme, tensor product polynomials and bivariate Bernstein polynomials. The envelopes are used to approximate solutions to continuously constrained optimization problems.

[1]  Jörg Peters,et al.  Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..

[2]  C. D. Boor,et al.  B-Form Basics. , 1986 .

[3]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[4]  Robert P. Markot,et al.  Surface algorithms using bounds on derivatives , 1986, Comput. Aided Geom. Des..

[5]  A. Pinkus On L[1]-approximation , 1991 .

[6]  Gerald E. Farin,et al.  Tighter convex hulls for rational Bézier curves , 1993, Comput. Aided Geom. Des..

[7]  David P. Dobkin,et al.  A path router for graph drawing , 1998, SCG '98.

[8]  Leif Kobbelt,et al.  Convergence of subdivision and degree elevation , 1994, Adv. Comput. Math..

[9]  Tomas Sauer Multivariate Bernstein polynomials and convexity , 1991, Comput. Aided Geom. Des..

[10]  Thomas W. Sederberg,et al.  Fat arcs: A bounding region with cubic convergence , 1989, Comput. Aided Geom. Des..

[11]  Gerhard Opfer,et al.  The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .

[12]  M. V. Kreveld Computational Geometry , 2000, Springer Berlin Heidelberg.

[13]  Gerhard Opfer,et al.  Nonnegative splines, in particular of degree five , 1998 .

[14]  Ronald A. DeVore,et al.  One-Sided Approximation of Functions , 1968 .

[15]  Ulrich Reif Best bounds on the approximation of polynomials and splines by their control structure , 2000, Comput. Aided Geom. Des..

[16]  Ron Goldman,et al.  Recursive subdivision without the convex hull property , 1986, Comput. Aided Geom. Des..

[17]  Wolfgang Dahmen,et al.  Subdivision algorithms converge quadratically , 1986 .

[18]  C. D. Boor B(asic)-Spline Basics. , 1986 .

[19]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[20]  S. Mudur,et al.  A new class of algorithms for the processing of parametric curves , 1983 .

[21]  A. Pinkus On L1-Approximation , 1989 .

[22]  Elaine COHEN,et al.  Rates of convergence of control polygons , 1985, Comput. Aided Geom. Des..

[23]  Les A. Piegl,et al.  Fundamental developments of computer-aided geometric modeling , 1993 .

[24]  Hans-Peter Seidel,et al.  Ray Tracing of Subdivision Surfaces , 1998, Rendering Techniques.