Asymptotic models and inference for extremes of spatio-temporal data

[1]  Lee Fawcett,et al.  A hierarchical model for extreme wind speeds , 2006 .

[2]  Anne Lohrli Chapman and Hall , 1985 .

[3]  Stuart G. Coles,et al.  Spatial Regression Models for Extremes , 1999 .

[4]  Andrew Gelman,et al.  Bayesian Measures of Explained Variance and Pooling in Multilevel (Hierarchical) Models , 2006, Technometrics.

[5]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[6]  Jonathan A. Tawn,et al.  Modelling extremes of the areal rainfall process. , 1996 .

[7]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[8]  Vincent Jomelli,et al.  A Bayesian hierarchical extreme value model for lichenometry , 2006 .

[9]  A. O'Hagan,et al.  Accounting for threshold uncertainty in extreme value estimation , 2006 .

[10]  Laurens de Haan,et al.  Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.

[11]  A. Davison,et al.  Generalized additive modelling of sample extremes , 2005 .

[12]  P. Bermudez,et al.  Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004) , 2009 .

[13]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[14]  Laurens de Haan,et al.  Spatial extremes: Models for the stationary case , 2006 .

[15]  J. Nolan,et al.  Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.

[16]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[17]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[18]  F. Mallor,et al.  An introduction to statistical modelling of extreme values. Application to calculate extreme wind speeds , 2009 .

[19]  C. Zhou,et al.  On spatial extremes: With application to a rainfall problem , 2008, 0807.4092.

[20]  José Pereira,et al.  Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes , 2010, Environmental and Ecological Statistics.

[21]  K. F. Turkman,et al.  A Predictive Approach to Tail Probability Estimation , 2001 .

[22]  D. Cocchi,et al.  Hierarchical space-time modelling of PM10 pollution , 2007 .

[23]  McKel Power-law behaviour and parametric models for the size-distribution of forest fires , 2001 .

[24]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[25]  J. Hüsler Extremes and related properties of random sequences and processes , 1984 .

[26]  William J. Reed,et al.  Power-law behaviour and parametric models for the size-distribution of forest fires , 2002 .

[27]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[28]  Jonathan A. Tawn,et al.  A conditional approach for multivariate extreme values (with discussion) , 2004 .

[29]  Huiyan Sang,et al.  Extreme value modeling for space-time data with meteorological applications , 2008 .

[30]  S. Cabras,et al.  A default Bayesian procedure for the generalized Pareto distribution , 2007 .

[31]  P. Albin On Extremal Theory for Nondifferentiable Processes , 1987 .

[32]  Janet E. Heffernan,et al.  A conditional approach for multivariate extreme values , 2004 .

[33]  J. Albin On Extremal Theory for Stationary Processes , 1990 .

[34]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .