Asymptotic models and inference for extremes of spatio-temporal data
暂无分享,去创建一个
[1] Lee Fawcett,et al. A hierarchical model for extreme wind speeds , 2006 .
[2] Anne Lohrli. Chapman and Hall , 1985 .
[3] Stuart G. Coles,et al. Spatial Regression Models for Extremes , 1999 .
[4] Andrew Gelman,et al. Bayesian Measures of Explained Variance and Pooling in Multilevel (Hierarchical) Models , 2006, Technometrics.
[5] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[6] Jonathan A. Tawn,et al. Modelling extremes of the areal rainfall process. , 1996 .
[7] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[8] Vincent Jomelli,et al. A Bayesian hierarchical extreme value model for lichenometry , 2006 .
[9] A. O'Hagan,et al. Accounting for threshold uncertainty in extreme value estimation , 2006 .
[10] Laurens de Haan,et al. Stationary max-stable fields associated to negative definite functions. , 2008, 0806.2780.
[11] A. Davison,et al. Generalized additive modelling of sample extremes , 2005 .
[12] P. Bermudez,et al. Spatial and temporal extremes of wildfire sizes in Portugal (1984–2004) , 2009 .
[13] S. Padoan,et al. Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.
[14] Laurens de Haan,et al. Spatial extremes: Models for the stationary case , 2006 .
[15] J. Nolan,et al. Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.
[16] Martin Schlather,et al. Models for Stationary Max-Stable Random Fields , 2002 .
[17] D. Nychka,et al. Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .
[18] F. Mallor,et al. An introduction to statistical modelling of extreme values. Application to calculate extreme wind speeds , 2009 .
[19] C. Zhou,et al. On spatial extremes: With application to a rainfall problem , 2008, 0807.4092.
[20] José Pereira,et al. Spatial extremes of wildfire sizes: Bayesian hierarchical models for extremes , 2010, Environmental and Ecological Statistics.
[21] K. F. Turkman,et al. A Predictive Approach to Tail Probability Estimation , 2001 .
[22] D. Cocchi,et al. Hierarchical space-time modelling of PM10 pollution , 2007 .
[23] McKel. Power-law behaviour and parametric models for the size-distribution of forest fires , 2001 .
[24] Sw. Banerjee,et al. Hierarchical Modeling and Analysis for Spatial Data , 2003 .
[25] J. Hüsler. Extremes and related properties of random sequences and processes , 1984 .
[26] William J. Reed,et al. Power-law behaviour and parametric models for the size-distribution of forest fires , 2002 .
[27] Andrew Thomas,et al. WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..
[28] Jonathan A. Tawn,et al. A conditional approach for multivariate extreme values (with discussion) , 2004 .
[29] Huiyan Sang,et al. Extreme value modeling for space-time data with meteorological applications , 2008 .
[30] S. Cabras,et al. A default Bayesian procedure for the generalized Pareto distribution , 2007 .
[31] P. Albin. On Extremal Theory for Nondifferentiable Processes , 1987 .
[32] Janet E. Heffernan,et al. A conditional approach for multivariate extreme values , 2004 .
[33] J. Albin. On Extremal Theory for Stationary Processes , 1990 .
[34] Vladimir I. Piterbarg,et al. Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .