Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of Xe136

Author(s): Akerib, DS; Akerlof, CW; Alqahtani, A; Alsum, SK; Anderson, TJ; Angelides, N; Araujo, HM; Armstrong, JE; Arthurs, M; Bai, X; Balajthy, J; Balashov, S; Bang, J; Baxter, A; Bensinger, J; Bernard, EP; Bernstein, A; Bhatti, A; Biekert, A; Biesiadzinski, TP; Birch, HJ; Boast, KE; Boxer, B; Bras, P; Buckley, JH; Bugaev, VV; Burdin, S; Busenitz, JK; Cabrita, R; Carels, C; Carlsmith, DL; Carmona-Benitez, MC; Cascella, M; Chan, C; Chott, NI; Cole, A; Cottle, A; Cutter, JE; Dahl, CE; De Viveiros, L; Dobson, JEY; Druszkiewicz, E; Edberg, TK; Eriksen, SR; Fan, A; Fiorucci, S; Flaecher, H; Fraser, ED; Fruth, T; Gaitskell, RJ; Genovesi, J; Ghag, C; Gibson, E; Gilchriese, MGD; Gokhale, S; Van Der Grinten, MGD; Hall, CR; Harrison, A; Haselschwardt, SJ; Hertel, SA; Hor, JYK; Horn, M; Huang, DQ; Ignarra, CM; Jahangir, O; Ji, W; Johnson, J; Kaboth, AC; Kamaha, AC; Kamdin, K; Kazkaz, K; Khaitan, D; Khazov, A; Khurana, I; Kocher, CD; Korley, L; Korolkova, EV; Kras, J; Kraus, H; Kravitz, S; Kreczko, L; Krikler, B; Kudryavtsev, VA; Leason, EA; Lee, J | Abstract: © 2020 American Physical Society. The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double β decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to Xe136 neutrinoless double β decay, taking advantage of the significant (g600 kg) Xe136 mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of Xe136 is projected to be 1.06×1026 years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with Xe136 at 1.06×1027 years.

J. J. Wang | I. Stancu | A. Bhatti | D. Carlsmith | R. Webb | M. Schubnell | J. Bensinger | S. Burdin | M. Cascella | E. Korolkova | B. Penning | B. L. Paredes | L. Kreczko | M. Tripathi | J. Busenitz | D. Khaitan | F. Wolfs | W. Lorenzon | T. Sumner | B. Krikler | H. Ara'ujo | A. Vaitkus | C. Chan | D. Mckinsey | H. Nelson | R. Taylor | A. Vacheret | T. Shutt | M. Yeh | K. Lesko | P. Zarzhitsky | B. López Paredes | A. Baxter | A. Bernstein | J. Reichenbacher | D. Akerib | K. Kazkaz | J. Dobson | Y. Meng | R. Rosero | V. Kudryavtsev | M. Szydagis | D. Tiedt | J. Balajthy | E. Bernard | M. Carmona-Benitez | L. de Viveiros | E. Druszkiewicz | S. Fiorucci | R. Gaitskell | C. Ghag | C. Hall | S. Hertel | M. Horn | D. Huang | D. Leonard | A. Lindote | M. Lopes | R. Mannino | J. Morad | A. Murphy | C. Nehrkorn | F. Neves | E. K. Pease | C. Silva | V. Solovov | P. Sorensen | K. O'Sullivan | A. Kaboth | S. Luitz | H. Flaecher | C. Akerlof | J. Buckley | V. Bugaev | D. Santone | S. Kravitz | A. Naylor | L. Manenti | J. Lyle | K. Stifter | J. Xu | A. Manalaysay | M. Monzani | S. Alsum | M. Arthurs | X. Bai | S. Balashov | T. Biesiadzinski | K. Boast | B. Boxer | P. Br'as | C. Carels | A. Cole | A. Cottle | J. Cutter | C. Dahl | T. Edberg | A. Fan | T. Fruth | J. Genovesi | M. Gilchriese | M. V. D. van der Grinten | S. Haselschwardt | J. Hor | C. Ignarra | W. Ji | K. Kamdin | A. Khazov | C. D. Kocher | H. Kraus | J. Lee | C. Levy | J. Li | J. Liao | F. Liao | J. Lin | R. Linehan | W. Lippincott | X. Liu | P. Majewski | E. Miller | E. Morrison | B. Mount | J. Nikoleyczik | I. Olcina | K. Oliver-Mallory | K. Palladino | K. Pushkin | C. Rhyne | P. Rossiter | R. Schnee | J. Silk | M. Solmaz | W. Taylor | D. Temples | P. Terman | M. Timalsina | A. Tom'as | L. Tvrznikova | U. Utku | T. J. Whitis | D. Woodward | W. Wang | M. F. Marzioni | S. Shaw | S. Pal | A. Monte | X. Xiang | N. Chott | D. Seymour | J. Mclaughlin | T. Anderson | N. Angelides | J. Armstrong | J. Bang | A. Biekert | H. J. Birch | R. Cabrita | L. D. Viveiros | S. R. Eriksen | E. Fraser | E. Gibson | S. Gokhale | M. D. Grinten | O. Jahangir | J. Johnson | A. Kamaha | I. Khurana | L. Korley | E. Leason | N. Marangou | E. Mizrachi | D. Naim | C. Nedlik | J. Palmer | N. Parveen | G. Pereira | Q. Riffard | G. Rischbieter | A. Sazzad | R. Smith | A. Stevens | N. Swanson | D. Tronstad | W. Turner | J. Watson | R. White | A. Alqahtani | A. Harrison | J. Kraś | R. Liu | C. Loniewski | A. Nilima | G. Rutherford | M. Tan | H. Birch | J. R. Watson | S. Burdin | J. Johnson | M. van der Grinten | R. Webb | Catarina Silva | C. Hall | Jun Xu | J. E. Armstrong | C. Hall | A. Bernstein | H. Araujo | Juhyeong Lee | S. Eriksen

[1]  J. J. Wang,et al.  Simulations of events for the LUX-ZEPLIN (LZ) dark matter experiment , 2020, Astroparticle Physics.

[2]  V. C. Antochi,et al.  Energy resolution and linearity in the keV to MeV range measured in XENON1T , 2020, 2003.03825.

[3]  Y. H. Lin,et al.  Measurement of the scintillation and ionization response of liquid xenon at MeV energies in the EXO-200 experiment , 2019, 1908.04128.

[4]  J. P. Rodrigues,et al.  Measurement of the gamma ray background in the Davis cavern at the Sanford Underground Research Facility , 2020 .

[5]  J. P. Rodrigues,et al.  Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment , 2018, Physical Review D.

[6]  A. K. Soma,et al.  Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. , 2019, Physical review letters.

[7]  A. Poon,et al.  Neutrinoless Double-Beta Decay: Status and Prospects , 2019, Annual Review of Nuclear and Particle Science.

[8]  P. Pirinen,et al.  Charged-current neutrino-nucleus scattering off Xe isotopes , 2019, Physical Review C.

[9]  P. Cushman,et al.  Erratum: Observation of annual modulation induced by γ rays from ( α,γ ) reactions at the Soudan Underground Laboratory [Phys. Rev. C 96 , 044609 (2017)] , 2018, Physical Review C.

[10]  R. Webb,et al.  Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment , 2017, Physical Review D.

[11]  Y. H. Lin,et al.  Sensitivity and discovery potential of the proposed nEXO experiment to neutrinoless double- β decay , 2017, Physical Review C.

[12]  R. Webb,et al.  Position reconstruction in LUX , 2017, 1710.02752.

[13]  H. Ejiri,et al.  Solar neutrinos as background to neutrinoless double-beta decay experiments , 2017, 1708.00927.

[14]  P. Cushman,et al.  Observation of annual modulation induced by γ rays from (α,γ) reactions at the Soudan Underground Laboratory , 2017, 1706.00100.

[15]  K. J. Thomas,et al.  LUX-ZEPLIN (LZ) Technical Design Report , 2017, 1703.09144.

[16]  K. J. Thomas,et al.  Identification of Radiopure Titanium for the LZ Dark Matter Experiment and Future Rare Event Searches , 2017, 1702.02646.

[17]  R. Webb,et al.  Signal yields, energy resolution, and recombination fluctuations in liquid xenon , 2016, 1610.02076.

[18]  K. Vetter,et al.  Muon flux measurements at the davis campus of the sanford underground research facility with the majorana demonstrator veto system , 2016, 1602.07742.

[19]  A. Goldschmidt,et al.  Deep Underground Science and Engineering Laboratory - Preliminary Design Report , 2011, 1108.0959.

[20]  X. Mougeot BetaShape: A new code for improved analytical calculations of beta spectra , 2017 .

[21]  Stephan Aune,et al.  PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers , 2016, 1610.08883.

[22]  M. Decowski,et al.  Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen. , 2016, Physical review letters.

[23]  R. Lang,et al.  A 220Rn source for the calibration of low-background experiments , 2016, 1602.01138.

[24]  R. Webb,et al.  Tritium calibration of the LUX dark matter experiment , 2015, 1512.03133.

[25]  K. Kratz,et al.  Low energy neutron background in deep underground laboratories , 2015, 1509.00770.

[26]  P. Fierlinger,et al.  Cosmogenic backgrounds to 0νββ in EXO-200 , 2015, 1512.06835.

[27]  L. M. Moutinho,et al.  Sensitivity of NEXT-100 to neutrinoless double beta decay , 2015, 1511.09246.

[28]  Y. H. Lin,et al.  Measurements of the ion fraction and mobility of alpha and beta decay products in liquid xenon using EXO-200 , 2015, 1506.00317.

[29]  M. Tripathi,et al.  Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector , 2014, 1403.1299.

[30]  K. Lesko The Sanford Underground Research Facility at Homestake (SURF) , 2015 .

[31]  M. Auger,et al.  Conceptual design and simulation of a water Cherenkov muon veto for the XENON1T experiment , 2014, 1406.2374.

[32]  M. Auger,et al.  Improved measurement of the 2νββ half-life of 136 Xe with the EXO-200 detector , 2014 .

[33]  H. Ejiri,et al.  Charged current neutrino cross section for solar neutrinos, and background to $\beta\beta(0\nu)$ experiments , 2013, 1309.7957.

[34]  L. Baudis,et al.  Neutrino physics with multi-ton scale liquid xenon detectors , 2013, 1309.7024.

[35]  C. Faham Prototype, Surface Commissioning and Photomultiplier Tube Characterization for the Large Underground Xenon (LUX) Direct Dark Matter Search Experiment , 2014 .

[36]  F. Iachello,et al.  57 22 v 1 [ nu clt h ] 2 5 S ep 2 01 2 Phase space factors for double-β decay , 2022 .

[37]  R. Saakyan Two-Neutrino Double-Beta Decay , 2013 .

[38]  T. R. Rodríguez,et al.  Shape and pairing fluctuation effects on neutrinoless double beta decay nuclear matrix elements. , 2013, Physical review letters.

[39]  M. Tripathi,et al.  Enhancement of NEST Capabilities for Simulating Low-Energy Recoils in Liquid Xenon , 2013, 1307.6601.

[40]  K. Cranmer,et al.  Erratum to: Asymptotic formulae for likelihood-based tests of new physics , 2013 .

[41]  M. Mustonen,et al.  Large-scale calculations of the double- β decay of 76 Ge , 130 Te , 136 Xe , and 150 Nd in the deformed self-consistent Skyrme quasiparticle random-phase approximation , 2013, 1301.6997.

[42]  R. Webb,et al.  An Ultra-Low Background PMT for Liquid Xenon Detectors , 2012, 1205.2272.

[43]  M Szydagis,et al.  Enhancement of NEST capabilities for simulating low-energy recoils in liquid xenon , 2013 .

[44]  K. Lesko,et al.  The Sanford Underground Research Facility at Homestake , 2012, The European Physical Journal Plus.

[45]  H. Ara'ujo,et al.  Liquid noble gas detectors for low energy particle physics , 2012, 1207.2292.

[46]  F. Iachello,et al.  Phase space factors for double-$\beta$ decay , 2012, 1209.5722.

[47]  R. Webb,et al.  LUXSim: A Component-Centric Approach to Low-Background Simulations , 2011, 1111.2074.

[48]  M. Tripathi,et al.  NEST: A Comprehensive Model for Scintillation Yield in Liquid Xenon , 2011, 1106.1613.

[49]  F. Gray,et al.  Cosmic ray muon flux at the Sanford Underground Laboratory at Homestake , 2010, 1007.1921.

[50]  V. Kudryavtsev,et al.  Radioactive background in a cryogenic dark matter experiment , 2010 .

[51]  K. Cranmer,et al.  Asymptotic formulae for likelihood-based tests of new physics , 2010, 1007.1727.

[52]  F. Gray,et al.  Early results on radioactive background characterization for Sanford Laboratory and DUSEL experiments , 2009, 0912.0211.

[53]  D J Colling,et al.  GridPP: the UK grid for particle physics , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[54]  D. Mckinsey,et al.  Preparation of Neutron-activated Xenon for Liquid Xenon Detector Calibration , 2007, 0708.1976.

[55]  E. G. Myers,et al.  Mass and double-beta-decay Q value of Xe-136 , 2007 .

[56]  E. G. Myers,et al.  Mass and double-beta-decay Q value of 136Xe. , 2007, Physical review letters.

[57]  G. Gerbier,et al.  Low energy neutron propagation in MCNPX and GEANT4 , 2006, hep-ex/0601030.

[58]  S. Basu,et al.  New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes , 2004, astro-ph/0412440.

[59]  Antony J. Wilson,et al.  GridPP: development of the UK computing Grid for particle physics , 2005 .

[60]  E. Conti,et al.  Correlated fluctuations between luminescence and ionization in liquid xenon , 2003, hep-ex/0303008.

[61]  V.I.Tretyak,et al.  The event generator DECAY4 for simulation of double beta processes and decay of radioactive nuclei , 2001, nucl-ex/0104018.

[62]  O. Ponkratenko,et al.  Event generator DECAY4 for simulating double-beta processes and decays of radioactive nuclei , 2000, nucl-ex/0104018.

[63]  A. Rappoldi,et al.  Detection of energy deposition down to the keV region using liquid xenon scintillation , 1993, Defense, Security, and Sensing.

[64]  C. K. Lee,et al.  Multiple muons in the Homestake underground detector , 1983 .

[65]  B. Dolgoshein,et al.  New Method of Registration of Ionizing-particle Tracks in Condensed Matter , 1970 .

[66]  R. L. Platzman,et al.  Total ionization in gases by high-energy particles: An appraisal of our understanding☆ , 1961 .

[67]  Ettore Majorana Teoria simmetrica dell’elettrone e del positrone , 1937 .