Identification and frequency domain analysis of non-stationary and nonlinear systems using time-varying NARMAX models

This paper introduces a new approach for nonlinear and non-stationary (time-varying) system identification based on time-varying nonlinear autoregressive moving average with exogenous variable (TV-NARMAX) models. The challenging model structure selection and parameter tracking problems are solved by combining a multiwavelet basis function expansion of the time-varying parameters with an orthogonal least squares algorithm. Numerical examples demonstrate that the proposed approach can track rapid time-varying effects in nonlinear systems more accurately than the standard recursive algorithms. Based on the identified time domain model, a new frequency domain analysis approach is introduced based on a time-varying generalised frequency response function (TV-GFRF) concept, which enables the analysis of nonlinear, non-stationary systems in the frequency domain. Features in the TV-GFRFs which depend on the TV-NARMAX model structure and time-varying parameters are investigated. It is shown that the high-dimensional frequency features can be visualised in a low-dimensional time–frequency space.

[1]  S. Billings,et al.  Reconstruction of Linear and Non-Linear Continuous Time System Models Using the Kernel Invariance Algorithm , 1999 .

[2]  Leon O. Chua,et al.  Measuring Volterra kernels , 1983 .

[3]  S. A. Billings,et al.  An efficient nonlinear cardinal B-spline model for high tide forecasts at the Venice Lagoon , 2006 .

[4]  S. Billings,et al.  Mapping non-linear integro-differential equations into the frequency domain , 1990 .

[5]  S. A. Billings,et al.  Spectral analysis for non-linear systems, Part I: Parametric non-linear spectral analysis , 1989 .

[6]  Theodore W. Berger,et al.  Modeling of nonlinear nonstationary dynamic systems with a novel class of artificial neural networks , 1999, IEEE Trans. Neural Networks.

[7]  L. Chua,et al.  Measuring Volterra kernels (II) , 1989 .

[8]  Taek Soo Jang,et al.  A New Method for Detecting the Time-Varying Nonlinear Damping in Nonlinear Oscillation Systems: Nonparametric Identification , 2011 .

[9]  R. D. Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982 .

[10]  S. Billings,et al.  The parametric characteristic of frequency response functions for nonlinear systems , 2006 .

[11]  C. Chui,et al.  On compactly supported spline wavelets and a duality principle , 1992 .

[12]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[13]  R. de Figueiredo The Volterra and Wiener theories of nonlinear systems , 1982, Proceedings of the IEEE.

[14]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[15]  S. A. Billings,et al.  Structure Detection and Model Validity Tests in the Identification of Nonlinear Systems , 1983 .

[16]  J. R. Trapero,et al.  Recursive Estimation and Time-Series Analysis. An Introduction for the Student and Practitioner, Second edition, Peter C. Young. Springer (2011), 504 pp., Hardcover, $119.00, ISBN: 978-3-642-21980-1 , 2015 .

[17]  Nirmal K. Bose,et al.  Properties determining choice of mother wavelet , 2005 .

[18]  H. Akaike A new look at the statistical model identification , 1974 .

[19]  Fahmida N. Chowdhury Input-output modeling of nonlinear systems with time-varying linear models , 2000, IEEE Trans. Autom. Control..

[20]  Hartono,et al.  Rain-wind-induced vibrations of a simple oscillator , 2004 .

[21]  P J Murtagh,et al.  Identification of equivalent modal damping for a wind turbine at standstill using Fourier and wavelet analysis , 2007 .

[22]  G. L. Zheng,et al.  Qualitative validation and generalization in non-linear system identification , 1999 .

[23]  S. Billings,et al.  Time-varying model identification for time–frequency feature extraction from EEG data , 2011, Journal of Neuroscience Methods.

[24]  Lennart Ljung,et al.  Adaptation and Tracking in System Identification , 1988 .

[25]  S. A. Billings,et al.  An investigation into the characteristics of non-linear frequency response functions. Part 2: New analysis methods based on symbolic expansions and graphical techniques , 2005 .

[26]  Vasilis Z. Marmarelis,et al.  Practicable identification of nonstationary nonlinear systems , 1981 .

[27]  P.A. Karjalainen,et al.  Estimation of event-related synchronization changes by a new TVAR method , 1997, IEEE Transactions on Biomedical Engineering.

[28]  S. Billings,et al.  Rational model identification using an extended least-squares algorithm , 1991 .

[29]  Yang Li,et al.  Identification of Time-Varying Systems Using Multi-Wavelet Basis Functions , 2011, IEEE Transactions on Control Systems Technology.

[30]  Ki H. Chon,et al.  Representation of Time-Varying Nonlinear Systems With Time-Varying Principal Dynamic Modes , 2007, IEEE Transactions on Biomedical Engineering.

[31]  S. Billings,et al.  RECONSTRUCTION OF LINEAR AND NON-LINEAR CONTINUOUS-TIME SYSTEM MODELS FROM INPUT/OUTPUT DATA USING THE KERNEL INVARIANCE ALGORITHM , 2000 .

[32]  David B. H. Tay,et al.  Time-varying parametric system multiresolution identification by wavelets , 2001, Int. J. Syst. Sci..

[33]  Maciej Niedzwiecki,et al.  Fast recursive basis function estimators for identification of time-varying processes , 2002, IEEE Trans. Signal Process..

[34]  Georgios B. Giannakis,et al.  Time-varying system identification and model validation using wavelets , 1993, IEEE Trans. Signal Process..

[35]  Rui Zou,et al.  Robust algorithm for estimation of time-varying transfer functions , 2004, IEEE Transactions on Biomedical Engineering.

[36]  Jeffrey D. Scargle,et al.  Nonlinear and Nonstationary Signal Processing , 2002, Technometrics.

[37]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[38]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[39]  S. A. Billings,et al.  Spectral analysis for non-linear systems, part III: Case study examples , 1990 .

[40]  S. Billings,et al.  Recursive algorithm for computing the frequency response of a class of non-linear difference equation models , 1989 .

[41]  Stephen A. Billings,et al.  Spectral analysis for non-linear systems, Part II: Interpretation of non-linear frequency response functions , 1989 .

[42]  Maciej Niedzwiecki,et al.  Functional Series Modelling Approach to Identification of Nonstationary Stochastic Systems , 1987, 1987 American Control Conference.

[43]  Lennart Ljung,et al.  Adaptation and tracking in system identification - A survey , 1990, Autom..

[44]  Kazushi Nakano,et al.  Nonlinear Predictive Control Using Neural Nets-Based Local Linearization ARX Model—Stability and Industrial Application , 2007, IEEE Transactions on Control Systems Technology.

[45]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[46]  José Carlos M. Bermudez,et al.  Transient and tracking performance analysis of the quantized LMS algorithm for time-varying system identification , 1996, IEEE Trans. Signal Process..

[47]  K. Chon,et al.  A Robust Time-Varying Identification Algorithm Using Basis Functions , 2003, Annals of Biomedical Engineering.

[48]  Israel Gohberg,et al.  A frequency response function for linear, time-varying systems , 1995, Math. Control. Signals Syst..

[49]  Stephen A. Billings,et al.  Time-varying parametric modelling and time-dependent spectral characterisation with applications to EEG signals using multiwavelets , 2010, Int. J. Model. Identif. Control..

[50]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[51]  S. A. Billings,et al.  An investigation into the characteristics of non-linear frequency response functions. Part 1: Understanding the higher dimensional frequency spaces , 2005 .

[52]  Sheng Chen,et al.  Identification of MIMO non-linear systems using a forward-regression orthogonal estimator , 1989 .