Lattice Monte Carlo Analysis of Thermal Diffusion in Multi-Phase Materials

This Chapter addresses the numerical simulation of thermal diffusion in multi-phase materials. A Lattice Monte Carlo method is used in the analysis of two- and three-dimensional calculation models. The composites considered are assembled by two or three phases, each exhibiting different thermal conductivities. First, a random distribution of phases is considered and the dependence of the effective thermal conductivity on the phase composition is investigated. The second part of this analysis uses a random-growth algorithm that simulates the influence of surface energy on the formation of composite materials. The effective thermal conductivity of these structures is investigated and compared to random structures. The final part of the Chapter addresses percolation analyses. It is shown that the simulation of surface energy distinctly affects the percolation behavior and therefore the thermal properties of composite materials.

[1]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[2]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[3]  R. Kikuchi Concept of the Long-Range Order in Percolation Problems , 1970 .

[4]  M. Ben-Amoz The effective thermal properties of two phase solids , 1970 .

[5]  Greg C. Glatzmaier,et al.  Use of volume averaging for the modeling of thermal properties of porous materials , 1988 .

[6]  L. K. Moleko,et al.  A self-consistent theory of matter transport in a random lattice gas and some simulation results , 1989 .

[7]  Robert W. Zimmerman,et al.  Formula for the conductivity of a two-component material based on the reciprocity theorem , 1998 .

[8]  R. Mascheroni,et al.  Extension of soil thermal conductivity models to frozen meats with low and high fat content , 2005 .

[9]  Andreas Öchsner,et al.  NUMERICAL AND ANALYTICAL CALCULATION OF THE ORTHOTROPIC HEAT TRANSFER PROPERTIES OF FIBRE REINFORCED MATERIALS , 2005 .

[10]  J. Carson,et al.  Predicting the effective thermal conductivity of unfrozen, porous foods , 2006 .

[11]  P. Karthikeyan,et al.  Estimating effective thermal conductivity of two-phase materials , 2006 .

[12]  Shiyi Chen,et al.  Mesoscopic simulations of phase distribution effects on the effective thermal conductivity of microgranular porous media. , 2007, Journal of colloid and interface science.

[13]  P. Karthikeyan,et al.  Effective conductivity estimation of binary metallic mixtures , 2007 .

[14]  Andreas Öchsner,et al.  The lattice Monte Carlo method for solving phenomenological mass andheat transport problems , 2007 .

[15]  R. Zia,et al.  Two-dimensional polymer networks near percolation , 2008 .

[16]  N. Pan,et al.  Predictions of effective physical properties of complex multiphase materials , 2008 .

[17]  A. Öchsner,et al.  Recent Advances in the Prediction of the Thermal Properties of Syntactic Metallic Hollow Sphere Structures , 2008 .

[18]  A. Öchsner,et al.  The Lattice Monte Carlo Method for Solving Phenomenological Mass and Thermal Diffusion Problems , 2008 .

[19]  Andreas Öchsner,et al.  Calculations of the Effective Thermal Conductivity in a Model of Syntactic Metallic Hollow Sphere Structures Using a Lattice Monte Carlo Method , 2008 .

[20]  Thermal Conductivity Enhancement of Compact Heat Sinks Using Cellular Metals , 2008 .

[21]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[22]  I. Nezbeda,et al.  Percolation threshold parameters of fluids. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  A. Öchsner,et al.  Lattice Monte Carlo and Experimental Analyses of the Thermal Conductivity of Random‐Shaped Cellular Aluminum , 2009 .

[24]  Andreas Öchsner,et al.  Non-linear calculations of transient thermal conduction in composite materials , 2009 .

[25]  A. Öchsner,et al.  A Lattice Monte Carlo Analysis of Thermal Transport in Phase Change Materials , 2010 .