A Nodal Spline Collocation Method for the Solution of Cauchy Singular Integral Equations

In this paper we introduce a nodal spline collocation method for the numerical solution of Cauchy singular integral equations. Uniform error bounds of the approximate solution are provided and some numerical examples are presented.

[1]  Apostolos Gerasoulis,et al.  Piecewise-polynomial quadratures for Cauchy singular integrals , 1986 .

[2]  Optimal local spline interpolants , 1987 .

[3]  José Alberto Cuminato,et al.  On the uniform convergence of a collocation method for a class of singular integral equations , 1987 .

[4]  C. Micchelli,et al.  Compactly supported fundamental functions for spline interpolation , 1988 .

[5]  P. Rabinowitz Uniform convergence results for Cauchy principal value integrals , 1991 .

[6]  J. M. De Villiers A convergence result in nodal spline interpolation , 1993 .

[7]  P. Rabinowitz Application of approximating splines for the solution of Cauchy singular integral equations , 1994 .

[8]  Sharp bounds for the Lebesgue constant in quadratic nodal spline interpolation , 1994 .

[9]  W. Hackbusch Singular Integral Equations , 1995 .

[10]  P. Rabinowitz,et al.  On the uniform convergence of Cauchy principal values of quasi-interpolating splines , 1995 .

[11]  V. Demichelis The use of modified quasi-interpolatory splines for the solution of the Prandtl equation , 1995 .

[12]  V. Demichelis Convergence of Derivatives of Optimal Nodal Splines , 1997 .

[13]  S. Perotto,et al.  Convergence of rules based on nodal splines for the numerical evaluation of certain 2D Cauchy principal value integrals , 1998 .

[14]  Kai Diethelm,et al.  Error bounds for spline-based quadrature methods for strongly singular integrals , 1998 .

[15]  J. M. Villiers,et al.  Peano Kernel Error Analysis for Quadratic Nodal Spline Interpolation , 1999 .

[16]  F. Caliò,et al.  An algorithm based on Q.I. modified splines for singular integral models , 2001 .

[17]  K. Diethelm Erratum to Error bounds for spline-based quadrature methods for strongly singular integrals [J. Co , 2002 .

[18]  C. Dagnino,et al.  A NODAL SPLINE COLLOCATION METHOD FOR WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS , 2003 .

[19]  Catterina Dagnino,et al.  Computational Aspects Of Numerical Integration Based On Optimal Nodal Splines , 2003, Int. J. Comput. Math..

[20]  Vittoria Demichelis,et al.  Finite-Part Integrals and Modified Splines , 2004 .

[21]  P. Lamberti V. Demichelis) Uniform error bounds for Cauchy principal value integrals , 2007 .

[22]  Caterina Santi ON OPTIMAL NODAL SPLINES AND THEIR APPLICATIONS , 2022 .