An overview of state-of-the-art partial discharge analysis techniques for condition monitoring

As one step toward the future smart grid, condition monitoring is important to facilitate the reliability of grid asset operation and to save on maintenance cost [1]. Most failures of the power grid are caused by electrical insulation failure, and a key indicator of such electrical failure is the occurrence of partial discharge (PD). Therefore, one focus of condition monitoring is to detect PD, especially in the early stages, to prevent a serious power failure or outage.

[1]  E. Gulski,et al.  Neural networks as a tool for recognition of partial discharges , 1993 .

[2]  Wei Huo,et al.  Optical fiber sensor-based detection of partial discharges in power transformers , 2001 .

[3]  S Singh,et al.  Dissolved gas analysis technique for incipient fault diagnosis in power transformers: A bibliographic survey , 2010, IEEE Electrical Insulation Magazine.

[4]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[5]  Yun Yang,et al.  Temporal Data Clustering via Weighted Clustering Ensemble with Different Representations , 2011, IEEE Transactions on Knowledge and Data Engineering.

[6]  G.C. Stone,et al.  Partial discharge diagnostics and electrical equipment insulation condition assessment , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[7]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[8]  M. D. Judd,et al.  Experimental comparison of UHF sensor types for PD location applications , 2009, 2009 IEEE Electrical Insulation Conference.

[9]  W R Si,et al.  Investigation of a comprehensive identification method used in acoustic detection system for GIS , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[10]  U. Fromm,et al.  Partial discharge and Breakdown Testing at High DC Voltage , 1995 .

[11]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.

[12]  T. Babnik,et al.  Principal Component and Hierarchical Cluster Analyses as Applied to Transformer Partial Discharge Data With Particular Reference to Transformer Condition Monitoring , 2008, IEEE Transactions on Power Delivery.

[13]  B. T. Phung,et al.  Partial discharge localization in transformers using UHF detection method , 2012, IEEE Transactions on Dielectrics and Electrical Insulation.

[14]  W.H. Tang,et al.  An evidential reasoning approach to transformer condition assessments , 2004, IEEE Transactions on Power Delivery.

[15]  Weng Hoe Leong,et al.  Comparison of Known PD Signals With the Developed and Commercial HFCT Sensors , 2007, IEEE Transactions on Power Delivery.

[16]  Weidong Liu,et al.  Research on the Typical Partial Discharge Using the UHF Detection Method for GIS , 2011, IEEE Transactions on Power Delivery.

[17]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[18]  S.M. Shahrtash,et al.  Insulation status assessment in high voltage cables based on decision tree algorithm , 2008, 2008 IEEE Canada Electric Power Conference.

[19]  A. Abu-Siada,et al.  A review of dissolved gas analysis measurement and interpretation techniques , 2014, IEEE Electrical Insulation Magazine.

[20]  Stefan Tenbohlen,et al.  New robust non-iterative algorithms for acoustic PD-localization in oil / paper-insulated transformers , 2005 .

[21]  V. Miranda,et al.  Improving the IEC table for transformer failure diagnosis with knowledge extraction from neural networks , 2005, IEEE Transactions on Power Delivery.

[22]  Venizelos Efthymiou,et al.  Feature extraction of partial discharge signals using the wavelet packet transform and classification with a probabilistic neural network , 2010 .

[23]  Sandro Vega-Pons,et al.  A Survey of Clustering Ensemble Algorithms , 2011, Int. J. Pattern Recognit. Artif. Intell..

[24]  M. Salama,et al.  SVM classification of contaminating particles in liquid dielectrics using higher order statistics of electrical and acoustic PD measurements , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[25]  P. M. Eleftherion Partial discharge. XXI. Acoustic emission based PD source location in transformers , 1995 .

[26]  P. L. Lewin,et al.  A feature based method for partial discharge source classification , 2012, 2012 IEEE International Symposium on Electrical Insulation.

[27]  R. Bartnikas,et al.  Trends in partial discharge pattern classification: a survey , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[28]  Jian Li,et al.  Oil-paper aging evaluation by fuzzy clustering and factor analysis to statistical parameters of partial discharges , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[29]  Ruijin Liao,et al.  An Integrated Decision-Making Model for Condition Assessment of Power Transformers Using Fuzzy Approach and Evidential Reasoning , 2011, IEEE Transactions on Power Delivery.

[30]  R. Bartnikas,et al.  Partial discharge pulse pattern recognition using an inductive inference algorithm , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[31]  Mang-Hui Wang,et al.  Partial discharge pattern recognition of current transformers using an ENN , 2005, IEEE Transactions on Power Delivery.

[32]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[33]  A. Cavallini,et al.  Partial discharge diagnostics: from apparatus monitoring to smart grid assessment , 2013, IEEE Electrical Insulation Magazine.

[34]  T.R. Blackburn,et al.  Descriptive data mining of partial discharge using decision tree with genetic algorithm , 2008, 2008 Australasian Universities Power Engineering Conference.

[35]  Yu-Hsun Lin Using K-Means Clustering and Parameter Weighting for Partial-Discharge Noise Suppression , 2011, IEEE Transactions on Power Delivery.

[36]  G.C. Montanari,et al.  Insulation defect localization through partial discharge measurements and numerical classification , 2004, 2004 IEEE International Symposium on Industrial Electronics.

[37]  Mehdi Vakilian,et al.  Data mining on partial discharge signals of power transformer's defect models , 2010, 45th International Universities Power Engineering Conference UPEC2010.

[38]  A. Contin,et al.  Automatic separation of multiple PD sources using an Amplitude-AutoCorrelation Relation Diagram , 2012, 2012 IEEE International Symposium on Electrical Insulation.

[39]  Kyuseok Shim,et al.  MapReduce Algorithms for Big Data Analysis , 2013, DNIS.

[40]  S. Tenbohlen,et al.  Detection and location of partial discharges in power transformers using acoustic and electromagnetic signals , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[41]  Chengke Zhou,et al.  Application of K-Means method to pattern recognition in on-line cable partial discharge monitoring , 2013, IEEE Transactions on Dielectrics and Electrical Insulation.

[42]  Hui Ma,et al.  Pattern recognition techniques and their applications for automatic classification of artificial partial discharge sources , 2013, IEEE Transactions on Dielectrics and Electrical Insulation.

[43]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[44]  M. R. Irving,et al.  Recognition of partial discharge patterns , 2012, 2012 IEEE Power and Energy Society General Meeting.

[45]  Li Yanming,et al.  Digital detection, grouping and classification of partial discharge signals at DC voltage , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[46]  Jian Li,et al.  Aging condition assessment of transformer oil-paper insulation model based on partial discharge analysis , 2011, IEEE Transactions on Dielectrics and Electrical Insulation.

[47]  W. Zheng,et al.  Research on Partial Discharge Localization in XLPE Cable Accessories Using Multi-Sensor Joint Detection Technology , 2011 .

[48]  C. Hudon,et al.  Partial discharge signal interpretation for generator diagnostics , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[49]  K X Lai,et al.  Application of data mining on partial discharge part I: predictive modelling classification , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[50]  H. Hirose,et al.  Diagnosis of electric power apparatus using the decision tree method , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[51]  G. Montanari,et al.  Digital detection and fuzzy classification of partial discharge signals , 2002 .

[52]  P. Morshuis,et al.  Partial discharges at DC voltage: their mechanism, detection and analysis , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[53]  Julio E. Posada-Roman,et al.  Fiber Optic Sensor for Acoustic Detection of Partial Discharges in Oil-Paper Insulated Electrical Systems , 2012, Sensors.

[54]  Michel Duval,et al.  Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases , 2001 .

[55]  K.R. Farmer,et al.  Acousto-optical PD detection for transformers , 2006, IEEE Transactions on Power Delivery.

[56]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[57]  A. Cavallini,et al.  A new approach to partial discharge testing of HV cable systems , 2006, IEEE Electrical Insulation Magazine.

[58]  M. Suleyman Demokan,et al.  Development of a fibre-optic sensor for partial discharges in oil-filled power transformers , 2002 .

[59]  P. Lewin,et al.  Comparison of on-line partial discharge detection methods for HV cable joints , 2002 .

[60]  A. Contin,et al.  Classification and separation of partial discharge signals by means of their auto-correlation function evaluation , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[61]  C.S. Chang,et al.  Separation of corona using wavelet packet transform and neural network for detection of partial discharge in gas-insulated substations , 2005, IEEE Transactions on Power Delivery.

[62]  Michael G. Danikas,et al.  Partial discharge recognition using neural networks: a review , 2003 .

[63]  P. L. Lewin,et al.  Partial discharge diagnostics of defective medium voltage three-phase PILC cables , 2012, 2012 IEEE International Symposium on Electrical Insulation.

[64]  L. Hao,et al.  Partial discharge source discrimination using a support vector machine , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[65]  J. A. Hunter,et al.  Discrimination of multiple PD sources using wavelet decomposition and principal component analysis , 2011, IEEE Transactions on Dielectrics and Electrical Insulation.

[66]  Guomin Luo,et al.  Study on performance of HFCT and UHF sensors in partial discharge detection , 2010, 2010 Conference Proceedings IPEC.

[67]  R. Candela,et al.  PD recognition by means of statistical and fractal parameters and a neural network , 2000 .

[68]  Magdy M. A. Salama,et al.  Partial discharge pattern classification using the fuzzy decision tree approach , 2005, IEEE Transactions on Instrumentation and Measurement.

[69]  Xi Chen,et al.  Fault Diagnosis of Transformer Based on Random Forest , 2011, 2011 Fourth International Conference on Intelligent Computation Technology and Automation.

[70]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[71]  T. Boczar,et al.  Application possibilities of artificial neural networks for recognizing partial discharges measured by the acoustic emission method , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[72]  Y. Han,et al.  Condition Monitoring Techniques for Electrical Equipment: A Literature Survey , 2002, IEEE Power Engineering Review.

[73]  M.D. Judd,et al.  Partial discharge monitoring of power transformers using UHF sensors. Part I: sensors and signal interpretation , 2005, IEEE Electrical Insulation Magazine.

[74]  T.R. Blackburn,et al.  Classification of partial discharge using PCA and SOM , 2007, 2007 International Power Engineering Conference (IPEC 2007).

[75]  N. Pattanadech,et al.  Partial Discharge Classification on High Voltage Equipment with K-Means , 2006, 2006 IEEE 8th International Conference on Properties & applications of Dielectric Materials.

[76]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[77]  L. Hao,et al.  Comparison of support vector machine based partial discharge identification parameters , 2006, Conference Record of the 2006 IEEE International Symposium on Electrical Insulation.

[78]  I. Cotton,et al.  Dissolved gas analysis of alternative fluids for power transformers , 2007, IEEE Electrical Insulation Magazine.

[79]  V. Miranda,et al.  Knowledge discovery in neural networks with application to transformer failure diagnosis , 2005, IEEE Transactions on Power Systems.

[80]  Caixin Sun,et al.  Improved Bagging Algorithm for Pattern Recognition in UHF Signals of Partial Discharges , 2011 .