Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis

Advanced alkaline water electrolysis using ion-solvating polymer membranes as electrolytes represents a new direction in the field of electrochemical hydrogen production. Polybenzimidazole membranes equilibrated in aqueous KOH combine the mechanical robustness and gas-tightness of a polymer with the conductive properties of an aqueous alkaline salt solution, and are thus of particular interest in this field of research. This work presents a comprehensive study of ternary alkaline polymer electrolyte systems developed around a polybenzimidazole derivative that is structurally tailored towards improved stability in alkaline environments. The novel electrolytes are extensively characterized with respect to physicochemical and electrochemical properties and the chemical stability is assessed in 0–50 wt% aqueous KOH for more than 6 months at 88 °C. In water electrolysis tests using porous 3-dimensional electrodes completely free from noble metals, they show polarization characteristics comparable to those of commercially available separators and good performance stability over several days.

[1]  P. Liu,et al.  Hygrothermal behavior of polybenzimidazole , 2016 .

[2]  Timothy J. Peckham,et al.  Hexamethyl-p-terphenyl poly(benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices , 2016 .

[3]  K. Bouzek,et al.  Alkali doped poly (2,5-benzimidazole) membrane for alkaline water electrolysis: Characterization and performance , 2016 .

[4]  S. Holdcroft,et al.  Poly(phenylene) and m-Terphenyl as Powerful Protecting Groups for the Preparation of Stable Organic Hydroxides. , 2016, Angewandte Chemie.

[5]  Yong Zhang,et al.  All solid supercapacitors based on an anion conducting polymer electrolyte , 2016 .

[6]  D. Aili,et al.  Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes , 2016 .

[7]  D. Aili,et al.  Zero-Gap Alkaline Water Electrolysis Using Ion-Solvating Polymer Electrolyte Membranes at Reduced KOH Concentrations , 2016 .

[8]  Detlef Stolten,et al.  Acidic or Alkaline? Towards a New Perspective on the Efficiency of Water Electrolysis , 2016 .

[9]  T. Zhao,et al.  Physicochemical properties of alkaline doped polybenzimidazole membranes for anion exchange membrane fuel cells , 2015 .

[10]  D. Aili,et al.  Porous poly(perfluorosulfonic acid) membranes for alkaline water electrolysis , 2015 .

[11]  D. Aili,et al.  The stability of poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) membranes in aqueous potassium hydroxide , 2015 .

[12]  L. Zeng,et al.  A high-performance sandwiched-porous polybenzimidazole membrane with enhanced alkaline retention for anion exchange membrane fuel cells , 2015 .

[13]  J. Linares,et al.  KOH-doped polybenzimidazole for alkaline direct glycerol fuel cells , 2015 .

[14]  Alexis T. Bell,et al.  Effects of Fe Electrolyte Impurities on Ni(OH)2/NiOOH Structure and Oxygen Evolution Activity , 2015 .

[15]  G. Jiang,et al.  Quaternized graphene oxide nanocomposites as fast hydroxide conductors. , 2015, ACS nano.

[16]  M. Fowler,et al.  High performance porous polybenzimidazole membrane for alkaline fuel cells , 2014 .

[17]  Plamen Atanassov,et al.  Anion-exchange membranes in electrochemical energy systems , 2014 .

[18]  D. Aili,et al.  Invited) A Stability Study of Alkali Doped PBI Membranes for Alkaline Electrolyzer Cells , 2014 .

[19]  K. Kreuer,et al.  Hydroxide, halide and water transport in a model anion exchange membrane , 2014 .

[20]  S. Nam,et al.  Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers , 2014 .

[21]  K. Bouzek,et al.  Polymer anion-selective membrane for electrolytic water splitting: The impact of a liquid electrolyte composition on the process parameters and long-term stability , 2014 .

[22]  T. Fujigaya,et al.  Palladium-Based Anion-Exchange Membrane Fuel Cell Using KOH-Doped Polybenzimidazole as the Electrolyte. , 2014, ChemPlusChem.

[23]  Michael A. Hickner,et al.  Anion exchange membranes: Current status and moving forward , 2013 .

[24]  D. Aili,et al.  Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis , 2013 .

[25]  W. Xing,et al.  Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions , 2013 .

[26]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[27]  Lin Zhuang,et al.  First implementation of alkaline polymer electrolyte water electrolysis working only with pure water , 2012 .

[28]  Steven Holdcroft,et al.  A stable hydroxide-conducting polymer. , 2012, Journal of the American Chemical Society.

[29]  K. Scott,et al.  A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts , 2012 .

[30]  Chaoyang Wang,et al.  Solid-state water electrolysis with an alkaline membrane. , 2012, Journal of the American Chemical Society.

[31]  Xiaohong Li,et al.  A comparison of cathodes for zero gap alkaline water electrolysers for hydrogen production , 2012 .

[32]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[33]  J. Jensen,et al.  Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells , 2011 .

[34]  Xiaohong Li,et al.  Prospects for alkaline zero gap water electrolysers for hydrogen production , 2011 .

[35]  Dc Kitty Nijmeijer,et al.  Anion exchange membranes for alkaline fuel cells: A review , 2011 .

[36]  T. Fujigaya,et al.  Very High Performance Alkali Anion‐Exchange Membrane Fuel Cells , 2011 .

[37]  Suli Wang,et al.  Durability study of KOH doped polybenzimidazole membrane for air-breathing alkaline direct ethanol f , 2011 .

[38]  F. Walsh,et al.  Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. , 2011, Physical chemistry chemical physics : PCCP.

[39]  S. C. Kumbharkar,et al.  N-substitution of polybenzimidazoles: Synthesis and evaluation of physical properties , 2009 .

[40]  D. Wan,et al.  Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells , 2009 .

[41]  I. Cabasso,et al.  Polybenzimidazole (PBI) molecular weight and Mark‐Houwink equation , 2009 .

[42]  A. D. Modestov,et al.  MEA for alkaline direct ethanol fuel cell with alkali doped PBI membrane and non-platinum electrodes , 2009 .

[43]  M. Islam,et al.  Variation in acid moiety of polybenzimidazoles: Investigation of physico-chemical properties towards their applicability as proton exchange and gas separation membrane materials , 2009 .

[44]  M. R. Tarasevich,et al.  Ethanol crossover through alkali-doped polybenzimidazole membrane , 2009 .

[45]  Q. Xin,et al.  Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell , 2008 .

[46]  Steven J. Thorpe,et al.  A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures , 2007 .

[47]  Haifeng Zhang,et al.  Determination of the Molecular Parameters and Studies of the Chain Conformation of Polybenzimidazole in DMAc/LiCl , 2006 .

[48]  Qingfeng Li,et al.  Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells , 2004 .

[49]  O. Savadogo,et al.  Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI) , 2000 .

[50]  R. Bouchet,et al.  Proton conduction in acid doped polybenzimidazole , 1999 .

[51]  F. E. Karasz,et al.  Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend , 1993 .

[52]  D. Chin,et al.  Sorption and transport behavior of perfluorinated ionomer membranes in concentrated NaOH solution , 1985 .