Robust Stability Analysis of the PWM Push-Pull DC–DC Converter

In this letter, robust stability analysis of the closed-loop pulsewidth modulated push-pull DC-DC converter with a state feedback control is presented using simple frequency-domain conditions based on the Hermite-Biehler theorem. The proposed technique for checking robust stability is efficient, since there is no need to calculate all the uncertain values of the system and hence no need to formulate and test all four Kharitonov polynomials.

[1]  V. Kharitonov Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .

[2]  Dariusz Czarkowski,et al.  Robust stability of state-feedback control of PWM DC-DC push-pull converter , 1995, IEEE Trans. Ind. Electron..

[3]  M. B. Argoun,et al.  On the stability of low-order perturbed polynomials , 1990 .

[4]  Y.-M. Chen,et al.  An Active-Clamp Push–Pull Converter for Battery Sourcing Applications , 2008, IEEE Transactions on Industry Applications.

[5]  Dariusz Czarkowski,et al.  Energy-conservation approach to modeling PWM DC-DC converters , 1993 .

[6]  Dariusz Czarkowski,et al.  Circuit models of PWM DC-DC converters , 1992, Proceedings of the IEEE 1992 National Aerospace and Electronics Conference@m_NAECON 1992.

[7]  Emilio Figueres,et al.  Sensitivity study of the control loops of DC-DC converters by means of robust parametric control theory , 2002, IEEE Trans. Ind. Electron..

[8]  F. R. Gantmakher The Theory of Matrices , 1984 .

[9]  Nusret Tan,et al.  Stability and performance analysis in an uncertain world , 2000 .

[10]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[11]  Marian K. Kazimierczuk,et al.  Robust stability of PWM buck DC-DC converter , 1996, Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro.

[12]  M. Argoun Frequency domain conditions for the stability of perturbed polynomials , 1987 .

[13]  L. R. Pujara,et al.  On the stability of uncertain polynomials with dependent coefficients , 1990 .