Can PPAD Hardness be Based on Standard Cryptographic Assumptions?

We consider the question of whether PPAD hardness can be based on standard cryptographic assumptions, such as the existence of one-way functions or public-key encryption. This question is particularly well-motivated in light of new devastating attacks on obfuscation candidates and their underlying building blocks, which are currently the only known source for PPAD hardness.

[1]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 1: Basic Techniques , 2001 .

[2]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[3]  Michael Luby,et al.  Pseudorandomness and cryptographic applications , 1996, Princeton computer science notes.

[4]  Eric Miles,et al.  Annihilation Attacks for Multilinear Maps: Cryptanalysis of Indistinguishability Obfuscation over GGH13 , 2016, CRYPTO.

[5]  Nir Bitansky,et al.  On the Cryptographic Hardness of Finding a Nash Equilibrium , 2015, FOCS.

[6]  Daniel R. Simon,et al.  Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions? , 1998, EUROCRYPT.

[7]  Kousha Etessami,et al.  Recursive Markov chains, stochastic grammars, and monotone systems of nonlinear equations , 2005, JACM.

[8]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[9]  Russell Impagliazzo,et al.  Limits on the provable consequences of one-way permutations , 1988, STOC '89.

[10]  Oded Goldreich Foundations of Cryptography: Index , 2001 .

[11]  Stephen M. Rudich,et al.  Limits on the provable consequences of one-way functions , 1983, STOC 1983.

[12]  Craig Gentry,et al.  Cryptanalysis of the Quadratic Zero-Testing of GGH , 2015, IACR Cryptol. ePrint Arch..

[13]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[14]  Xiaotie Deng,et al.  Settling the complexity of computing two-player Nash equilibria , 2007, JACM.

[15]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2012, JACM.

[16]  Nir Bitansky,et al.  Perfect Structure on the Edge of Chaos - Trapdoor Permutations from Indistinguishability Obfuscation , 2016, TCC.

[17]  Christos H. Papadimitriou,et al.  Exponential lower bounds for finding Brouwer fixed points , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[18]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[19]  Russell Impagliazzo,et al.  The relative complexity of NP search problems , 1995, STOC '95.

[20]  Craig Gentry,et al.  Zeroizing Without Low-Level Zeroes: New MMAP Attacks and their Limitations , 2015, CRYPTO.

[21]  J. Cheon,et al.  An algorithm for NTRU problems and cryptanalysis of the GGH multilinear map without a low-level encoding of zero , 2016, LMS J. Comput. Math..

[22]  Sanjam Garg,et al.  Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium , 2016, CRYPTO.

[23]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[24]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[25]  Gil Segev,et al.  On Constructing One-Way Permutations from Indistinguishability Obfuscation , 2016, Journal of Cryptology.

[26]  Sanjam Garg,et al.  On the Exact Cryptographic Hardness of Finding a Nash Equilibrium , 2015, IACR Cryptol. ePrint Arch..

[27]  Jung Hee Cheon,et al.  Cryptanalysis of the Multilinear Map over the Integers , 2014, EUROCRYPT.

[28]  Russell Impagliazzo,et al.  A Tight Relationship Between Generic Oracles and Type-2 Complexity Theory , 1997, Inf. Comput..

[29]  Timothy G. Abbott,et al.  On Algorithms for Nash Equilibria , 2004 .

[30]  Boaz Barak,et al.  Merkle Puzzles are Optimal , 2008, IACR Cryptol. ePrint Arch..

[31]  Brice Minaud,et al.  Cryptanalysis of the New CLT Multilinear Map over the Integers , 2016, EUROCRYPT.

[32]  Yupu Hu,et al.  Cryptanalysis of GGH Map , 2016, EUROCRYPT.

[33]  Jung Hee Cheon,et al.  An Algorithm for NTRU Problems and Cryptanalysis of the GGH Multilinear Map without an encoding of zero , 2016, IACR Cryptol. ePrint Arch..

[34]  Jung Hee Cheon,et al.  Cryptanalysis of the New CLT Multilinear Maps , 2015, IACR Cryptol. ePrint Arch..

[35]  Brice Minaud,et al.  Cryptanalysis of the New Multilinear Map over the Integers , 2015, IACR Cryptol. ePrint Arch..

[36]  Luca Trevisan,et al.  Notions of Reducibility between Cryptographic Primitives , 2004, TCC.

[37]  Gil Segev,et al.  Limits on the Power of Indistinguishability Obfuscation and Functional Encryption , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[38]  Moni Naor,et al.  The Journey from NP to TFNP Hardness , 2016, ITCS.

[39]  Oded Goldreich,et al.  On Security Preserving Reductions - Revised Terminology , 2000, Studies in Complexity and Cryptography.

[40]  Bernhard von Stengel,et al.  Exponentially many steps for finding a Nash equilibrium in a bimatrix game , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[41]  Omer Reingold,et al.  Finding Collisions in Interactive Protocols - Tight Lower Bounds on the Round and Communication Complexities of Statistically Hiding Commitments , 2015, SIAM J. Comput..