On the Identification of a Lie Algebra Given by its Structure Constants
暂无分享,去创建一个
Douglas S. Rand | Hans Zassenhaus | D. W. Rand | Pavel Winternitz | H. Zassenhaus | D. Rand | P. Winternitz
[1] C. Chevalley,et al. Sur certains groupes simples , 1955 .
[2] Pavel Winternitz,et al. Lie symmetries of a generalised nonlinear Schrodinger equation: I. The symmetry group and its subgroups , 1988 .
[3] H. Zassenhaus. Über eine Verallgemeinerung des Henselschen Lemmas , 1954 .
[4] D. W. Rand,et al. PASCAL programs for identification of Lie algebras: Part 1. Radical — a program to calculate the radical and nil radical of parameter-free and parameter-dependent lie algebras , 1986 .
[5] Fritz Schwarz,et al. A reduce package for determining lie symmetries of ordinary and partial differential equations , 1984 .
[6] P. Olver. Applications of Lie Groups to Differential Equations , 1986 .
[7] H. Zassenhaus,et al. PASCAL programs for identification of lie algebras Part 2: SPLIT — a program to decompose parameter-free and parameter-dependent Lie algebras into direct sums , 1987 .
[8] J. Humphreys. Introduction to Lie Algebras and Representation Theory , 1973 .
[9] R. T. Sharp,et al. Continuous subgroups of the fundamental groups of physics. III. The de Sitter groups , 1977 .
[10] H. Zassenhaus. Lie groups, lie algebras and representation theory , 1981 .
[11] Ian Stewart,et al. COMPUTING THE STRUCTURE OF A LIE ALGEBRA , 1977 .
[12] Vinet,et al. Constants of motion for a spin-(1/2) particle in the field of a dyon. , 1985, Physical review letters.
[13] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[14] D. Rand. PASCAL programs for identification of Lie algebras. Part 3: LEVI decomposition and canonical basis , 1987 .
[15] R. T. Sharp,et al. Invariants of real low dimension Lie algebras , 1976 .