Effect of ball-milling and lithium insertion on the lithium mobility and structure of Li3Fe2(PO4)3

The structure and lithium mobility have been investigated for A- and B-Li3Fe2(PO4)3, before and after mechanical milling and lithium insertion, by using Li NMR. The data indicate that the milling step induces a significant amount of defects in the structure, while it improves the ability of the material to take up lithium. The lithium mobility in the different samples was studied by collecting NMR spectra at different temperatures, extensive lithium mobility being observed for both polytypes at temperatures above 150 °C. This mobility was found to be enhanced after milling. The enhancement in the electrode material utilization is ascribed to both a reduction of the diffusion lengths (particle size) and an increase in the intrinsic mobility of lithium in the sample.

[1]  C. Grey,et al.  Linking local environments and hyperfine shifts: a combined experimental and theoretical (31)P and (7)Li solid-state NMR study of paramagnetic Fe(III) phosphates. , 2010, Journal of the American Chemical Society.

[2]  C. Delmas,et al.  Analysis of the 7Li NMR signals in the Monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3 Phases , 2010 .

[3]  Mark F. Mathias,et al.  Electrochemistry and the Future of the Automobile , 2010 .

[4]  I. Heinmaa,et al.  Study of Lithium Dynamics in Monoclinic Li3Fe2(PO4)3 using 6Li VT and 2D Exchange MAS NMR Spectroscopy , 2010 .

[5]  J. Cabana MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System , 2010 .

[6]  M Rosa Palacín,et al.  Recent advances in rechargeable battery materials: a chemist's perspective. , 2009, Chemical Society reviews.

[7]  Montse Casas-Cabanas,et al.  The effects of moderate thermal treatments under air on LiFePO4-based nano powders , 2009 .

[8]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[9]  M. Armand,et al.  Formation of a complete solid solution between the triphylite and fayalite olivine structures , 2008 .

[10]  M. Thrippleton,et al.  Magic angle spinning (MAS) NMR linewidths in the presence of solid-state dynamics , 2008 .

[11]  M. Armand,et al.  Building better batteries , 2008, Nature.

[12]  P. Heitjans,et al.  Microscopic Li self-diffusion parameters in the lithiated anode material Li4 + xTi5O12 (0 < or = x < or = 3) measured by 7Li solid state NMR. , 2007, Physical chemistry chemical physics : PCCP.

[13]  M. Nakayama,et al.  Changes in electronic structure upon Li insertion reaction of monoclinic Li3Fe2(PO4)3. , 2006, The journal of physical chemistry. B.

[14]  G. Goward,et al.  7Li NMR and Two-Dimensional Exchange Study of Lithium Dynamics in Monoclinic Li3V2(PO4)3 , 2006 .

[15]  C. Delmas,et al.  Coupled ion/electron hopping in Li(x)NiO2: a 7Li NMR study. , 2006, Inorganic chemistry.

[16]  J. Maier,et al.  Nanoionics: ion transport and electrochemical storage in confined systems , 2005, Nature materials.

[17]  J. Cabana,et al.  Ex situ nmr and neutron diffraction study of structure and lithium motion in Li7MnN4 , 2005 .

[18]  C. Grey,et al.  NMR studies of cathode materials for lithium-ion rechargeable batteries. , 2004, Chemical reviews.

[19]  N. Kosova,et al.  Dispersed materials for rechargeable lithium batteries: Reactive and non-reactive grinding , 2004 .

[20]  P. Heitjans,et al.  Diffusion and Ionic Conduction in Nanocrystalline Ceramics , 2003 .

[21]  G. Ceder,et al.  Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations , 2003 .

[22]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[23]  M. Wagemaker,et al.  Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase , 2002, Nature.

[24]  D. D. MacNeil,et al.  A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes , 2002 .

[25]  Marca M Doeff,et al.  Hyperfine fields at the Li site in LiFePO(4)-type olivine materials for lithium rechargeable batteries: a (7)Li MAS NMR and SQUID study. , 2002, Journal of the American Chemical Society.

[26]  M. Morcrette,et al.  On the way to the optimization of Li3Fe2(PO4)3 positive electrode materials , 2002 .

[27]  M. Doeff,et al.  7Li and 31P Magic Angle Spinning Nuclear Magnetic Resonance of LiFePO4-type materials , 2001 .

[28]  L. Nazar,et al.  A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON Analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3 , 2000 .

[29]  John B. Goodenough,et al.  New cathode materials for rechargeable lithium batteries : The 3-D framework structures Li3Fe2(XO4)3 (X= P, As) , 1998 .

[30]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[31]  Hajime Arai,et al.  Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds , 1996 .

[32]  Terziev,et al.  Thermally induced lithium disorder in Li3Fe2(PO4)3. , 1993, Physical review. B, Condensed matter.

[33]  J. Baszyński Mechanochemical effects of grinding on the YBa2Cu3O7−δ , 1993 .

[34]  M. Awano,et al.  Grinding Effects on the Synthesis and Sintering of Cordierite , 1992 .

[35]  S. Sigaryov Fast-ion transport mechanism in Li3M2(PO4)3 crystals (M ≡ Sc, Cr, Fe, In) , 1992 .

[36]  A. Orliukas,et al.  Electric conductivity, dielectric permittivity and Raman scattering spectra of Li3Fe2(PO4)3 single crystals , 1990 .

[37]  A. Bykov Superionic conductors Li3M2(PO4)3 (M==Fe, Sc, Cr): Synthesis, structure and electrophysical properties , 1990 .

[38]  M. D. L. Rochère,et al.  Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3 : A = Li, Na, Ag, K ; M = Cr, Fe , 1983 .

[39]  J. Boilot,et al.  NASICON type materials - Na3M2(PO4)3 (M=Sc, Cr, Fe): Na+-Na+ correlations and phase transitions , 1983 .

[40]  John S. Waugh,et al.  NMR in rotating solids , 1979 .

[41]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[42]  C. Delmas,et al.  7 Li MAS NMR study of electrochemically deintercalated LixNi0.30Co0.70O2 phases: evidence of electronic and ionic mobility, and redox processes , 2001 .

[43]  P. Jönsson,et al.  The magnetic structure and properties of rhombohedral Li3Fe2(PO4)3. , 2000 .

[44]  T. Rojo,et al.  Spectroscopic and Magnetic Properties of α-Li3Fe2(PO4)3: A Two-Sublattice Ferrimagnet , 2000 .

[45]  M. R. Palacín New British Standards , 1979 .