Logarithmic Hodge–Witt Forms and Hyodo–Kato Cohomology☆

The aim of this paper is to extend some results of Illusie and Raynaud [13] to the Hyodo–Kato cohomology [9 17 19 23 24]. Let S be the spectrum of a perfect field k of characteristic p > 0 endowed with a fine log structure and let X be a proper, log smooth, and of Cartiertype fine log scheme over S. Recall that the Hyodo–Kato cohomology groups H X/W S of X are defined as the limit over n of the crystalline cohomology groups H X/Wn S of X over the Teichmüller lifting Wn S . These are finitely generated W -modules, on which the Frobenius endomorphism of X induces a σ-linear isogeny φ, where W = W k and σ is the Frobenius automorphism of W . We study the slopes of the corresponding crystals, and especially their integral slopes, using the alternative description of the Hyodo–Kato cohomology groups as H X W X/S , where W X/S is the de Rham–Witt complex of X/S [9]. First of all, generalizing the Illusie–Raynaud finiteness theorem [13, (II, 2.2)] we prove that R X W X/S , as an object of D R , where R is the Raynaud ring W F V +W F V d, has bounded cohomology, consisting of coherent complexes of R-modules (Theorem 3.1). This implies the degeneration modulo torsion of the slope spectral sequence as well as the Mazur–Ogus-type results [2, Sect. 8; 22, Sect. 7] concerning the Newton polygon of H X/W S and the Hodge polygon given by the Hm−q X q X/S . Next, we study the integral slopes. To do this we

[1]  Pierre Lorenzon Indexed algebras associated to a log structure and a theorem of p-descent on log schemes , 2000 .

[2]  Takeshi Tsuji p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case , 1999 .

[3]  Takeshi Tsuji Syntomic complexes and p-adic vanishing cycles. , 1996 .

[4]  A. Ogus F-crystals, Griffiths transversality, and the Hodge decomposition , 1994 .

[5]  A. Mokrane La suite spectrale des poids en cohomologie de Hyodo-Kato , 1993 .

[6]  S. Bloch,et al.  p-Adic etale cohomology , 1986 .

[7]  T. Ekedahl Diagonal complexes and F-gauge structures , 1986 .

[8]  T. Ekedahl On the multiplicative properties of the de rham-witt complex. II. , 1984 .

[9]  T. Ekedahl On the multiplicative properties of the de Rham—Witt complex. I , 1984 .

[10]  L. Illusie,et al.  Les suites spectrales associées au complexe de de Rham-Witt , 1983 .

[11]  J. Colliot-Thélène,et al.  TORSION DANS LE GROUPE DE CHOW DE CODIMENSION DEUX , 1983 .

[12]  L. Illusie Finiteness, duality, and Künneth theorems in the cohomology of the De Rham Witt complex , 1983 .

[13]  P. Berthelot Le Théorème de Dualité Plate Pour les Surfaces (d'après J.S. Milne) , 1981 .

[14]  N. Nygaard Slopes of powers of Frobenius on crystalline cohomology , 1981 .

[15]  L. Illusie Complexe de de Rham-Witt et cohomologie cristalline , 1979 .

[16]  P. Berthelot,et al.  Notes on Crystalline Cohomology. , 1978 .

[17]  A. Grothendieck,et al.  Cohomologie l-adique et fonctions L , 1977 .