High-order similarity relations in radiative transfer

Radiative transfer equations (RTEs) with different scattering parameters can lead to identical solution radiance fields. Similarity theory studies this effect by introducing a hierarchy of equivalence relations called "similarity relations". Unfortunately, given a set of scattering parameters, it remains unclear how to find altered ones satisfying these relations, significantly limiting the theory's practical value. This paper presents a complete exposition of similarity theory, which provides fundamental insights into the structure of the RTE's parameter space. To utilize the theory in its general high-order form, we introduce a new approach to solve for the altered parameters including the absorption and scattering coefficients as well as a fully tabulated phase function. We demonstrate the practical utility of our work using two applications: forward and inverse rendering of translucent media. Forward rendering is our main application, and we develop an algorithm exploiting similarity relations to offer "free" speedups for Monte Carlo rendering of optically dense and forward-scattering materials. For inverse rendering, we propose a proof-of-concept approach which warps the parameter space and greatly improves the efficiency of gradient descent algorithms. We believe similarity theory is important for simulating and acquiring volume-based appearance, and our approach has the potential to benefit a wide range of future applications in this area.

[1]  Wojciech Matusik,et al.  Physical reproduction of materials with specified subsurface scattering , 2010, ACM Trans. Graph..

[2]  Derek Nowrouzezahrai,et al.  State of the art in photon density estimation , 2013, SA '13.

[3]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[4]  B. Wilson,et al.  Similarity relations for anisotropic scattering in monte carlo simulations of deeply penetrating neu , 1989 .

[5]  Steve Marschner,et al.  A practical model for subsurface light transport , 2001, SIGGRAPH.

[6]  Y Painchaud,et al.  Hybrid Monte Carlo for photon transport through optically thick scattering media. , 1999, Applied optics.

[7]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[8]  M. Gross,et al.  Fabricating translucent materials using continuous pigment mixtures , 2013, ACM Trans. Graph..

[9]  Henrik Wann Jensen,et al.  Rendering Translucent Materials Using Photon Diffusion , 2007, Rendering Techniques.

[10]  Paul E. Debevec,et al.  Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 1998, SIGGRAPH '08.

[11]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, ACM Trans. Graph..

[12]  Shuang Zhao,et al.  Inverse volume rendering with material dictionaries , 2013, ACM Trans. Graph..

[13]  Eugene d'Eon,et al.  A quantized-diffusion model for rendering translucent materials , 2011, SIGGRAPH 2011.

[14]  Yves D. Willems,et al.  Rendering Participating Media with Bidirectional Path Tracing , 1996, Rendering Techniques.

[15]  Wojciech Matusik,et al.  Physical reproduction of materials with specified subsurface scattering , 2010, SIGGRAPH 2010.

[16]  B. Wilson,et al.  Similarity relations for the interaction parameters in radiation transport. , 1989, Applied optics.

[17]  G. Arfken Mathematical Methods for Physicists , 1967 .

[18]  Jos Stam,et al.  Multiple Scattering as a Diffusion Process , 1995, Rendering Techniques.

[19]  Jeppe Revall Frisvad,et al.  Computing the scattering properties of participating media using Lorenz-Mie theory , 2007, ACM Trans. Graph..

[20]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[21]  Jonathan T. Moon,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, ACM Trans. Graph..

[22]  L. Khachiyan,et al.  The polynomial solvability of convex quadratic programming , 1980 .

[23]  Per H. Christensen,et al.  Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering , 2013, Comput. Graph. Forum.

[24]  Kenneth E. Torrance,et al.  A hybrid monte carlo method for accurate and efficient subsurface scattering , 2005, EGSR '05.

[25]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Comput. Graph. Forum.

[26]  Edward H. Adelson,et al.  Understanding the role of phase function in translucent appearance , 2013, TOGS.

[27]  Yoshinori Dobashi,et al.  An inverse problem approach for automatically adjusting the parameters for rendering clouds using photographs , 2012, ACM Trans. Graph..

[28]  Stephen Lin,et al.  Modeling and rendering of heterogeneous translucent materials using the diffusion equation , 2008, TOGS.

[29]  Alexander Keller,et al.  Metropolis Light Transport for Participating Media , 2000, Rendering Techniques.

[30]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[31]  Henrik Wann Jensen,et al.  Rendering translucent materials using photon diffusion , 2008, SIGGRAPH '08.

[32]  K. Bala,et al.  A radiative transfer framework for rendering materials with anisotropic structure , 2010, SIGGRAPH 2010.

[33]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[34]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[35]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[36]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, ACM Trans. Graph..

[37]  Paul Debevec Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 2008, SIGGRAPH Classes.

[38]  Wenzel Jakob,et al.  State of the art in photon density estimation , 2012, SIGGRAPH '12.

[39]  Adam Arbree,et al.  Heterogeneous Subsurface Scattering Using the Finite Element Method , 2011, IEEE Transactions on Visualization and Computer Graphics.

[40]  Wolfgang Heidrich,et al.  HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions , 2011, SIGGRAPH 2011.