Direct measurement of the system–environment coupling as a tool for understanding decoherence and dynamical decoupling

Decoherence is a major obstacle to any practical implementation of quantum information processing. One of the leading strategies to reduce decoherence is dynamical decoupling—the use of an external field to average out the effect of the environment. The decoherence rate under any control field can be calculated if the spectrum of the coupling to the environment is known. We present a direct measurement of the bath-coupling spectrum in an ensemble of optically trapped ultra-cold atoms, by applying a spectrally narrow-band control field. The measured spectrum follows a Lorentzian shape at low frequencies but exhibits non-monotonic features at higher frequencies due to the oscillatory motion of the atoms in the trap. These features agree with our analytical models and numerical Monte Carlo simulations of the collisional bath. From the inferred bath-coupling spectrum, we predict the performance of some well-known dynamical decoupling sequences. We then apply these sequences in experiment and compare the results to predictions, finding good agreement in the weak-coupling limit. Thus, our work establishes experimentally the validity of the overlap integral formalism and is an important step towards the implementation of an optimal dynamical decoupling sequence for a given measured bath spectrum.

[1]  D. Meschede,et al.  Analysis of dephasing mechanisms in a standing-wave dipole trap (12 pages) , 2005 .

[2]  M. Lukin Colloquium: Trapping and manipulating photon states in atomic ensembles , 2003 .

[3]  A. D. Boozer,et al.  Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles , 2003, Nature.

[4]  Nir Davidson,et al.  Process tomography of dynamical decoupling in a dense cold atomic ensemble. , 2010, Physical review letters.

[5]  C. cohen-tannoudji,et al.  Modified Zeeman Hyperfine Spectra Observed in H 1 and Rb 87 Ground States Interacting with a Nonresonant rf Field , 1970 .

[6]  Suppression of magnetic state decoherence using ultrafast optical pulses , 2000, Physical review letters.

[7]  Luigi Moi,et al.  Light induced kinetic effects on atoms, ions and molecules , 1991 .

[8]  Jian-Wei Pan,et al.  A millisecond quantum memory for scalable quantum networks , 2008, 0807.5064.

[9]  N. Davidson,et al.  Universal scaling of collisional spectral narrowing in an ensemble of cold atoms. , 2010, Physical review letters.

[10]  M. Lukin,et al.  Universal approach to optimal photon storage in atomic media. , 2006, Physical review letters.

[11]  Preventing multipartite disentanglement by local modulations. , 2006, Physical review letters.

[12]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[13]  D. Haar,et al.  Fluctuation, relaxation and resonance in magnetic systems : Scottish Universities's Summer School, 1961 , 1962 .

[14]  Chu,et al.  Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density , 2000, Physical review letters.

[15]  Effect of cold collisions on spin coherence and resonance shifts in a magnetically trapped ultracold gas , 2002, cond-mat/0208294.

[16]  W. Derbyshire,et al.  High Resolution NMR , 1966, Nature.

[17]  Anna Keselman,et al.  Single-ion quantum lock-in amplifier , 2011, Nature.

[18]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[19]  I Bloch,et al.  Electromagnetically induced transparency and light storage in an atomic Mott insulator. , 2009, Physical review letters.

[20]  G Kurizki,et al.  Universal dynamical control of quantum mechanical decay: modulation of the coupling to the continuum. , 2001, Physical review letters.

[21]  E. Knill,et al.  DYNAMICAL DECOUPLING OF OPEN QUANTUM SYSTEMS , 1998, quant-ph/9809071.

[22]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[23]  S. Das Sarma,et al.  How to Enhance Dephasing Time in Superconducting Qubits , 2007, 0712.2225.

[24]  L. Hau,et al.  Nonlinear Optics at Low Light Levels , 1999 .

[25]  G. Kurizki,et al.  Unified theory of dynamically suppressed qubit decoherence in thermal baths. , 2004, Physical review letters.

[26]  Jian-Wei Pan,et al.  Experimental demonstration of a BDCZ quantum repeater node , 2008, Nature.

[27]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[28]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .

[29]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[30]  Ryogo Kubo,et al.  Note on the Stochastic Theory of Resonance Absorption , 1954 .

[31]  B. Garside Optical Resonance and Two-level Atoms , 1975 .

[32]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[33]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[34]  Daniel A. Lidar,et al.  Optimal dynamical decoherence control of a qubit. , 2008, Physical review letters.

[35]  U. Haeberlen,et al.  High resolution NMR in solids , 1976 .

[36]  H. J. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[37]  Gershon Kurizki,et al.  Universal dynamical decoherence control of noisy single- and multi-qubit systems , 2007, 0704.3347.

[38]  D. Suter,et al.  Optimal pulse spacing for dynamical decoupling in the presence of a purely dephasing spin bath , 2010, 1011.6243.

[39]  G. Kurizki,et al.  Universal dephasing control during quantum computation , 2007, 0708.1308.

[40]  Rui Zhang,et al.  Creation of long-term coherent optical memory via controlled nonlinear interactions in Bose-Einstein condensates. , 2009, Physical review letters.

[41]  Gershon Kurizki,et al.  Bath-optimized minimal-energy protection of quantum operations from decoherence. , 2010, Physical review letters.

[42]  D. Lidar,et al.  Fault-tolerant quantum dynamical decoupling , 2004, 2005 Quantum Electronics and Laser Science Conference.