Bayesian information criterion for multidimensional sinusoidal order selection

Detecting the sinusoidal order is a prerequisite step for parametric multidimensional sinusoidal frequency estimation methods, whose applications range from radar and wireless communications to nuclear magnetic resonance spectroscopy. Although the Bayesian information criterion (BIC) has been commonly applied for model order selection, its application to sinusoidal order estimation is recent. By means of estimation of Fisher information matrix, we extend the 1-D BIC to multidimensional case for multidimensional sinusoidal order selection. The multidimensional BIC is shown in simulations to outperform the state-of-the-art algorithms in terms of probability of correct detection.

[1]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[2]  Josef A. Nossek,et al.  Simultaneous Schur decomposition of several nonsymmetric matrices to achieve automatic pairing in multidimensional harmonic retrieval problems , 1998, IEEE Trans. Signal Process..

[3]  Christoph F. Mecklenbräuker,et al.  Multidimensional Rank Reduction Estimator for Parametric MIMO Channel Models , 2004, EURASIP J. Adv. Signal Process..

[4]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[5]  Florian Roemer,et al.  Higher-Order SVD-Based Subspace Estimation to Improve the Parameter Estimation Accuracy in Multidimensional Harmonic Retrieval Problems , 2008, IEEE Transactions on Signal Processing.

[6]  Petar M. Djuric,et al.  Asymptotic MAP criteria for model selection , 1998, IEEE Trans. Signal Process..

[7]  Jun Liu,et al.  An Eigenvector-Based Approach for Multidimensional Frequency Estimation With Improved Identifiability , 2006, IEEE Transactions on Signal Processing.

[8]  Nikos D. Sidiropoulos,et al.  On 3D harmonic retrieval for wireless channel sounding , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[9]  Nikos D. Sidiropoulos,et al.  Tensor Algebra and Multidimensional Harmonic Retrieval in Signal Processing for MIMO Radar , 2010, IEEE Transactions on Signal Processing.

[10]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of constant modulus multidimensional harmonic retrieval , 2002, IEEE Trans. Signal Process..

[11]  Florian Roemer,et al.  Multi-dimensional model order selection , 2011, EURASIP J. Adv. Signal Process..

[12]  Jieping Ye,et al.  Detection of number of components in CANDECOMP/PARAFAC models via minimum description length , 2016, Digit. Signal Process..

[13]  Jieping Ye,et al.  Multidimensional folding for sinusoidal order selection , 2016, Digit. Signal Process..

[14]  Lei Huang,et al.  Subspace techniques for multidimensional model order selection in colored noise , 2013, Signal Process..

[15]  Florian Roemer,et al.  Subspace based multi-dimensional model order selection in colored noise scenarios , 2011, 2011 IEEE Information Theory Workshop.

[16]  Michael D. Zoltowski,et al.  Closed-form 2-D angle estimation with rectangular arrays in element space or beamspace via unitary ESPRIT , 1996, IEEE Trans. Signal Process..

[17]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[18]  K. J. Liu,et al.  A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.