Invariant Synchrony Subspaces of Sets of Matrices

A synchrony subspace of R^n is defined by setting certain components of the vectors equal according to an equivalence relation. Synchrony subspaces invariant under a given set of square matrices form a lattice. Applications of these invariant synchrony subspaces include equitable and almost equitable partitions of the vertices of a graph used in many areas of graph theory, balanced and exo-balanced partitions of coupled cell networks, and coset partitions of Cayley graphs. We study the basic properties of invariant synchrony subspaces and provide many examples of the applications. We also present what we call the split and cir algorithm for finding the lattice of invariant synchrony subspaces. Our theory and algorithm is further generalized for non-square matrices. This leads to the notion of tactical decompositions studied for its application in design theory.

[1]  B. D. Mckay,et al.  Practical graph isomorphism, Numerical mathematics and computing, Proc. 10th Manitoba Conf., Winnipeg/Manitoba 1980 , 1981 .

[2]  Antoine Gerbaud,et al.  Spectra of generalized compositions of graphs and hierarchical networks , 2010, Discret. Math..

[3]  Martin Hasler,et al.  Mesoscale and clusters of synchrony in networks of bursting neurons. , 2011, Chaos.

[4]  G. Grätzer Lattice Theory: Foundation , 1971 .

[5]  Peter J. Cameron,et al.  Tactical decompositions and orbits of projective groups , 1982 .

[6]  Ian Stewart,et al.  Patterns of Synchrony in Coupled Cell Networks with Multiple Arrows , 2005, SIAM J. Appl. Dyn. Syst..

[7]  Antonio Bicchi,et al.  Controllability decompositions of networked systems through quotient graphs , 2008, 2008 47th IEEE Conference on Decision and Control.

[8]  Bahman Gharesifard,et al.  On almost equitable partitions and network controllability , 2016, 2016 American Control Conference (ACC).

[9]  Manuela A D Aguiar,et al.  Synchronization and equitable partitions in weighted networks. , 2018, Chaos.

[10]  Ian Stewart,et al.  The lattice of balanced equivalence relations of a coupled cell network , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  M. Kanat Camlibel,et al.  Upper and Lower Bounds for Controllable Subspaces of Networks of Diffusively Coupled Agents , 2014, IEEE Transactions on Automatic Control.

[12]  Francesco Sorrentino,et al.  Cluster synchronization and isolated desynchronization in complex networks with symmetries , 2013, Nature Communications.

[13]  Marcus Pivato,et al.  Symmetry Groupoids and Patterns of Synchrony in Coupled Cell Networks , 2003, SIAM J. Appl. Dyn. Syst..

[14]  M. Kanat Camlibel,et al.  Controllability of diffusively-coupled multi-agent systems with general and distance regular coupling topologies , 2011, IEEE Conference on Decision and Control and European Control Conference.

[15]  Domingos M. Cardoso,et al.  Spectra of graphs obtained by a generalization of the join graph operation , 2013, Discret. Math..

[16]  Salvatore Monaco,et al.  On multi-consensus and almost equitable graph partitions , 2019, Autom..

[17]  Diter Betten,et al.  A Tactical Decomposition for Incidence Structures , 1992 .

[18]  Nándor Sieben,et al.  Symmetry and Automated Branch Following for a Semilinear Elliptic PDE on a Fractal Region , 2006, SIAM J. Appl. Dyn. Syst..

[19]  John M. Neuberger,et al.  Computing eigenfunctions on the Koch Snowflake: a new grid and symmetry , 2006, 1010.0775.

[20]  Ming Cao,et al.  Interacting with Networks: How Does Structure Relate to Controllability in Single-Leader, Consensus Networks? , 2012, IEEE Control Systems.

[21]  Martin Golubitsky,et al.  Patterns in Square Arrays of Coupled Cells , 1997 .

[22]  Bahman Gharesifard,et al.  Almost equitable partitions and new necessary conditions for network controllability , 2017, Autom..

[23]  Flora Ferreira,et al.  Patterns of synchrony for feed-forward and auto-regulation feed-forward neural networks. , 2017, Chaos.

[24]  Zhijian Ji,et al.  Graph partitions and the controllability of directed signed networks , 2019, Science China Information Sciences.

[25]  John W. Aldis A Polynomial Time Algorithm to Determine Maximal Balanced Equivalence Relations , 2008, Int. J. Bifurc. Chaos.

[26]  Adam Phillips,et al.  On Balance , 2010 .

[27]  G. Heilbrunn The balance. , 1968, The Journal of school health.

[28]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[29]  Peter J. A. Cock,et al.  Computation of Balanced Equivalence Relations and Their Lattice for a Coupled Cell Network , 2012, SIAM J. Appl. Dyn. Syst..

[30]  Francesco De Pellegrini,et al.  Epidemic Outbreaks in Networks with Equitable or Almost-Equitable Partitions , 2014, SIAM J. Appl. Math..

[31]  Nándor Sieben,et al.  Newton's Method and Symmetry for Semilinear Elliptic PDE on the Cube , 2013, SIAM J. Appl. Dyn. Syst..

[32]  Mauricio Barahona,et al.  Graph partitions and cluster synchronization in networks of oscillators , 2016, Chaos.

[33]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[34]  Mattia Frasca,et al.  A criterion for stability of cluster synchronization in networks with external equitable partitions , 2019, Autom..

[35]  Manuela A. D. Aguiar,et al.  The Lattice of Synchrony Subspaces of a Coupled Cell Network: Characterization and Computation Algorithm , 2014, J. Nonlinear Sci..

[36]  John M. Neuberger,et al.  Synchrony and Antisynchrony for Difference-Coupled Vector Fields on Graph Network Systems , 2019, SIAM J. Appl. Dyn. Syst..

[37]  Peter Dembowski,et al.  Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen , 1958 .

[38]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[39]  Magnus Egerstedt,et al.  Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective , 2009, SIAM J. Control. Optim..

[40]  Sarika Jalan,et al.  Understanding cancer complexome using networks, spectral graph theory and multilayer framework , 2017, Scientific Reports.

[41]  Nándor Sieben,et al.  Automated bifurcation Analysis for Nonlinear Elliptic Partial Difference Equations on Graphs , 2009, Int. J. Bifurc. Chaos.

[42]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[43]  P. Lancaster,et al.  Invariant subspaces of matrices with applications , 1986 .

[44]  Francesco Sorrentino,et al.  Complete characterization of the stability of cluster synchronization in complex dynamical networks , 2015, Science Advances.

[45]  P. Dembowski Finite geometries , 1997 .

[46]  Charles Delorme,et al.  Laplacian eigenvectors and eigenvalues and almost equitable partitions , 2007, Eur. J. Comb..