On the Complexity of Probabilistic Abstract Argumentation

Probabilistic abstract argumentation combines Dung's abstract argumentation framework with probability theory in order to model uncertainty in argumentation. In this setting, we address the fundamental problem of computing the probability that a set of arguments is an extension according to a given semantics. We focus on the most popular semantics (i.e., admissible, stable, complete, grounded, preferred, ideal), and show the following dichotomy result: computing the probability that a set of arguments is an extension is either PTIME or FP#P -complete depending on the semantics adopted. Our PTIME results are particularly interesting, as they hold for some semantics for which no polynomial-time technique was known so far.

[1]  Paolo Mancarella,et al.  Computing ideal sceptical argumentation , 2007, Artif. Intell..

[2]  Trevor J. M. Bench-Capon,et al.  Argumentation in artificial intelligence , 2007, Artif. Intell..

[3]  Sébastien Konieczny,et al.  Weighted Attacks in Argumentation Frameworks , 2012, KR.

[4]  Phan Minh Dung,et al.  Towards (Probabilistic) Argumentation for Jury-based Dispute Resolution , 2010, COMMA.

[5]  Paul E. Dunne,et al.  Semi-stable semantics , 2006, J. Log. Comput..

[6]  Michael Wooldridge,et al.  Weighted argument systems: Basic definitions, algorithms, and complexity results , 2011, Artif. Intell..

[7]  Sergio Flesca,et al.  Efficiently Estimating the Probability of Extensions in Abstract Argumentation , 2013, SUM.

[8]  Trevor J. M. Bench-Capon Persuasion in Practical Argument Using Value-based Argumentation Frameworks , 2003, J. Log. Comput..

[9]  Nir Oren,et al.  Probabilistic Argumentation Frameworks , 2011, TAFA.

[10]  Guillermo Ricardo Simari,et al.  Formalizing argumentative reasoning in a possibilistic logic programming setting with fuzzy unification , 2008, Int. J. Approx. Reason..

[11]  Claudette Cayrol,et al.  A Reasoning Model Based on the Production of Acceptable Arguments , 2002, Annals of Mathematics and Artificial Intelligence.

[12]  Guillermo Ricardo Simari,et al.  A logic programming framework for possibilistic argumentation: Formalization and logical properties , 2008, Fuzzy Sets Syst..

[13]  Sanjay Modgil,et al.  Reasoning about preferences in argumentation frameworks , 2009, Artif. Intell..

[14]  Tjitze Rienstra Towards a Probabilistic Dung-style Argumentation System , 2012, AT.

[15]  Srdjan Vesic,et al.  A new approach for preference-based argumentation frameworks , 2011, Annals of Mathematics and Artificial Intelligence.

[16]  Martin Caminada,et al.  An Algorithm for Stage Semantics , 2010, COMMA.

[17]  Anthony Hunter,et al.  A probabilistic approach to modelling uncertain logical arguments , 2013, Int. J. Approx. Reason..

[18]  Pietro Baroni,et al.  Semantics of Abstract Argument Systems , 2009, Argumentation in Artificial Intelligence.

[19]  Pierre Marquis,et al.  Prudent semantics for argumentation frameworks , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[20]  Michael Wooldridge,et al.  Complexity of Abstract Argumentation , 2009, Argumentation in Artificial Intelligence.

[21]  Henri Prade,et al.  Reaching Agreement Through Argumentation: A Possibilistic Approach , 2004, KR.

[22]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[23]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[24]  Anthony Hunter,et al.  Elements of Argumentation , 2007, ECSQARU.

[25]  Anthony Hunter Some Foundations for Probabilistic Abstract Argumentation , 2012, COMMA.

[26]  Matthias Thimm,et al.  A Probabilistic Semantics for abstract Argumentation , 2012, ECAI.

[27]  Paul E. Dunne,et al.  The computational complexity of ideal semantics , 2009, Artif. Intell..

[28]  Henry Prakken,et al.  An abstract framework for argumentation with structured arguments , 2010, Argument Comput..

[29]  Pietro Baroni,et al.  SCC-recursiveness: a general schema for argumentation semantics , 2005, Artif. Intell..

[30]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..