Wave propagation across acoustic / Biot's media: a finite-difference method

Numerical methods are developed to simulate the wave propagation in heterogeneous 2D fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach.

[1]  Bruno Lombard,et al.  Time domain numerical modeling of wave propagation in 2D heterogeneous porous media , 2011, J. Comput. Phys..

[2]  R. LeVeque,et al.  A comparison of the extended finite element method with the immersed interface method for elliptic equations with discontinuous coefficients and singular sources , 2006 .

[3]  Mathieu Chekroun,et al.  Comparison between a multiple scattering method and direct numerical simulations for elastic wave propagation in concrete , 2009 .

[4]  M. Dumbser,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes — III. Viscoelastic attenuation , 2007 .

[5]  Robert D. Stoll,et al.  Wave Attenuation in Saturated Sediments , 1970 .

[6]  José M. Carcione,et al.  SOME ASPECTS OF THE PHYSICS AND NUMERICAL MODELING OF BIOT COMPRESSIONAL WAVES , 1995 .

[7]  José M. Carcione,et al.  Simulation of surface waves in porous media , 2010 .

[8]  Julien Diaz,et al.  Analytical solution for waves propagation in heterogeneous acoustic/porous media. Part II: the 3D case , 2009 .

[9]  Shechao Feng,et al.  High-frequency acoustic properties of a fluid/porous solid interface. I. New surface mode , 1983 .

[10]  Bruno Lombard,et al.  Biot-JKD model: Simulation of 1D transient poroelastic waves with fractional derivatives , 2013, J. Comput. Phys..

[11]  Olivier Coussy,et al.  Acoustics of Porous Media , 1988 .

[12]  Jeroen Tromp,et al.  Spectral-element simulations of wave propagation in porous media: Finite-frequency sensitivity kernels based upon adjoint methods , 2008 .

[13]  C. Langton,et al.  Biot theory: a review of its application to ultrasound propagation through cancellous bone. , 1999, Bone.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Michael Dumbser,et al.  Discontinuous Galerkin methods for wave propagation in poroelastic media , 2008 .

[16]  Abdelaâziz Ezziani,et al.  Modélisation mathématique et numérique de la propagation d'ondes dans les milieux viscoélastiques et poroélastiques , 2005 .

[17]  Sébastien Robert,et al.  Coherent waves in a multiply scattering poro-elastic medium obeying Biot's theory , 2008 .

[18]  D. Smeulders,et al.  Frequency-dependent acoustic properties of a fluid/porous solid interface , 2004 .

[19]  B. Gustafsson The convergence rate for difference approximations to mixed initial boundary value problems , 1975 .

[20]  J. Carcione,et al.  Computational poroelasticity — A review , 2010 .

[21]  J. H. Rosenbaum Synthetic microseismograms; logging in porous formations , 1974 .

[22]  Joël Piraux,et al.  Numerical treatment of two-dimensional interfaces for acoustic and elastic waves , 2004 .

[23]  R. LeVeque,et al.  Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .

[24]  José M. Carcione,et al.  Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic and Porous Media , 2011 .

[25]  Roland Martin,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media , 2008 .

[26]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[27]  Joël Piraux,et al.  Numerical modeling of transient two-dimensional viscoelastic waves , 2011, J. Comput. Phys..

[28]  T. Plona,et al.  Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies , 1980 .

[29]  Laszlo Adler,et al.  Reflection and transmission of elastic waves from a fluid‐saturated porous solid boundary , 1990 .

[30]  Jian-Fei Lu,et al.  Wave field simulation for heterogeneous porous media with singular memory drag force , 2005 .

[31]  S. Kelly,et al.  Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid , 1956 .

[32]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[33]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[34]  I. Edelman On the existence of the low-frequency surface waves in a porous medium , 2004 .

[35]  D. L. Johnson,et al.  High‐frequency acoustic properties of a fluid/porous solid interface. II. The 2D reflection Green’s function , 1983 .

[36]  Boris Gurevich,et al.  Interface conditions for Biot’s equations of poroelasticity , 1999 .

[37]  M. Biot Theory of Propagation of Elastic Waves in a Fluid‐Saturated Porous Solid. I. Low‐Frequency Range , 1956 .

[38]  Boris Gurevich,et al.  Validation of the Slow Compressional Wave in Porous Media: Comparison of Experiments and Numerical Simulations , 1999 .

[39]  P. Rasolofosaon Importance of interface hydraulic condition on the generation of second bulk compressional wave in porous media , 1988 .

[40]  R. LeVeque,et al.  The immersed interface method for acoustic wave equations with discontinuous coefficients , 1997 .