Extraction and fusion of partial face features for cancelable identity verification

In this paper, we propose to extract localized random features directly from partial face image matrix for cancelable identity verification. Essentially, the extracted random features consist of compressed horizontal and vertical facial information obtained from a structured projection of the raw face images. For template security reason, the face appearance information is concealed via averaging several templates over different transformations. The match score outputs of these cancelable templates are then fused through a total error rate minimization. Extensive experiments were carried out to evaluate and benchmark the performance of the proposed method based on the AR, FERET, ORL, Sheffield and BERC databases. Our empirical results show encouraging performances in terms of verification accuracy as well as satisfying four cancelable biometric properties.

[1]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[2]  Kar-Ann Toh,et al.  Fusing horizontal and vertical components of face images for identity verification , 2009, 2009 4th IEEE Conference on Industrial Electronics and Applications.

[3]  Jaihie Kim,et al.  Biometric scores fusion based on total error rate minimization , 2008, Pattern Recognit..

[4]  Andrew Beng Jin Teoh,et al.  Cancelable Biometrics Realization With Multispace Random Projections , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[5]  Andrew Beng Jin Teoh,et al.  A performance driven methodology for cancelable face templates generation , 2010, Pattern Recognit..

[6]  Yan Zhang,et al.  On the Euclidean distance of images , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Kar-Ann Toh,et al.  Benchmarking a reduced multivariate polynomial pattern classifier , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Yulian Zhu,et al.  Subpattern-based principle component analysis , 2004, Pattern Recognit..

[9]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[11]  Arun Ross,et al.  Score normalization in multimodal biometric systems , 2005, Pattern Recognit..

[12]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[13]  Massimo Tistarelli,et al.  Distance Measures for Gabor Jets-Based Face Authentication: A Comparative Evaluation , 2007, ICB.

[14]  Daoqiang Zhang,et al.  Diagonal principal component analysis for face recognition , 2006, Pattern Recognit..

[15]  Vijayan K. Asari,et al.  An improved face recognition technique based on modular PCA approach , 2004, Pattern Recognit. Lett..

[16]  Kar-Ann Toh,et al.  Between Classification-Error Approximation and Weighted Least-Squares Learning , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Andrew Beng Jin Teoh,et al.  Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[19]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[20]  Marcello D'Agostino,et al.  What’s so special about Euclidean distance? , 2009, Soc. Choice Welf..

[21]  Sangyoun Lee,et al.  Robust Face Recognition by Fusion of Visual and Infrared Cues , 2006, 2006 1ST IEEE Conference on Industrial Electronics and Applications.

[22]  A. Martínez,et al.  The AR face databasae , 1998 .

[23]  Andrew Beng Jin Teoh,et al.  Combining local face image features for identity verification , 2011, Neurocomputing.

[24]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[25]  Daoqiang Zhang,et al.  (2D)2PCA: Two-directional two-dimensional PCA for efficient face representation and recognition , 2005, Neurocomputing.

[26]  Chengjun Liu,et al.  Horizontal and Vertical 2DPCA Based Discriminant Analysis for Face Verification Using the FRGC Version 2 Database , 2007, ICB.

[27]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[28]  Nalini K. Ratha,et al.  Enhancing security and privacy in biometrics-based authentication systems , 2001, IBM Syst. J..

[29]  Jian Yang,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  George Bebis,et al.  Face recognition experiments with random projection , 2005, SPIE Defense + Commercial Sensing.

[31]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[32]  Lei Wang,et al.  Generalized 2D principal component analysis for face image representation and recognition , 2005, Neural Networks.

[33]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[34]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..