The effects of calcium, temperature and phospholamban phosphorylation on the dynamics of the calcium-stimulated ATPase of canine cardiac sarcoplasmic reticulum.

[1]  J. P. Huggins,et al.  Evidence for a phosphorylation‐induced conformational change in phospholamban from the effects of three proteases , 1987, FEBS letters.

[2]  J. Fujii,et al.  Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban. , 1987, The Journal of clinical investigation.

[3]  J. H. Collins,et al.  Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. , 1986, The Journal of biological chemistry.

[4]  D. Borchman,et al.  Proteolytic activation of the canine cardiac sarcoplasmic reticulum calcium pump. , 1986, Biochemistry.

[5]  E. Kranias,et al.  A phospholamban protein phosphatase activity associated with cardiac sarcoplasmic reticulum. , 1986, The Journal of biological chemistry.

[6]  F. Hofmann,et al.  Cardiac sarcoplasmic reticulum contains a low-affinity site for phenylalkylamines. , 1986, European journal of biochemistry.

[7]  J. Liepnieks,et al.  Proteolytic cleavage of phospholamban purified from canine cardiac sarcoplasmic reticulum vesicles. Generation of a low resolution model of phospholamban structure. , 1986, The Journal of biological chemistry.

[8]  N. Green,et al.  Two Ca2+ ATPase genes: Homologies and mechanistic implications of deduced amino acid sequences , 1986, Cell.

[9]  D. Morrison,et al.  Detection of a subunit of cellular Pol II within highly purified preparations of RNA polymerase isolated from rabbit poxvirus virions , 1986, Cell.

[10]  S. Fleischer,et al.  The nature of the modulation of Ca2+ transport as studied by reconstitution of cardiac sarcoplasmic reticulum. , 1986, The Journal of biological chemistry.

[11]  C. M. Kemp,et al.  Rotational diffusion of rhodopsin in the visual receptor membrane: effects of temperature and bleaching , 1986 .

[12]  D. Chapman,et al.  Conformational changes in the (Ca2+ + Mg2+)-ATPase of sarcoplasmic reticulum detected using phosphorescence polarization. , 1985, Biochimica et biophysica acta.

[13]  C. Gilbert,et al.  Rotational diffusion of calcium-dependent adenosine-5'-triphosphatase in sarcoplasmic reticulum: a detailed study. , 1984, Biochemistry.

[14]  L. Jones,et al.  Phosphorylation-induced mobility shift in phospholamban in sodium dodecyl sulfate-polyacrylamide gels. Evidence for a protein structure consisting of multiple identical phosphorylatable subunits. , 1984, The Journal of biological chemistry.

[15]  P. J. England,et al.  Sarcolemmal phospholamban is phosphorylated in isolated rat hearts perfused with isoprenaline , 1983, FEBS letters.

[16]  D. Chapman,et al.  Monitoring membrane protein rotational diffusion using time-averaged phosphorescence. , 1983, Biochimica et biophysica acta.

[17]  P. Garland,et al.  Segmental motion and rotational diffusion of the Ca2+-translocating adenosine triphosphatase of sarcoplasmic reticulum, measured by time-resolved phosphorescence depolarization. , 1983, Biochemical Journal.

[18]  S. Fleischer,et al.  Isolation and characterization of canine cardiac sarcoplasmic reticulum with improved Ca2+ transport properties. , 1983, The Journal of biological chemistry.

[19]  E. Reimann,et al.  [6] Catalytic subunit of cAMP-dependent protein kinase , 1983 .

[20]  M. Kirchberger,et al.  Calmodulin-mediated regulation of calcium transport and (Ca2+ + Mg2+)-activated ATPase activity in isolated cardiac sarcoplasmic reticulum. , 1982, The Journal of biological chemistry.

[21]  J. Arrondo,et al.  Protein rotation, enzyme activity and photooxidation of SH groups in sarcoplasmic reticulum Ca2+-ATPase. , 1981, Biochimica et biophysica acta.

[22]  R. Cherry,et al.  Rotational motion and flexibility of Ca2+,Mg2+-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum membranes. , 1981, Biochemistry.

[23]  C. H. Moore,et al.  Phosphorescence of protein-bound eosin and erythrosin. A possible probe for measurements of slow rotational mobility. , 1979, The Biochemical journal.

[24]  E. Nigg,et al.  Influence of temperature and cholesterol on the rotational diffusion of band 3 in the human erythrocyte membrane. , 1979, Biochemistry.

[25]  A. Katz,et al.  Mechanism by which Cyclic Adenosine 3′:5′‐Monophosphate‐Dependent Protein Kinase Stimulates Calcium Transport in Cardiac Sarcoplasmic Reticulum , 1979, Circulation research.

[26]  P. England,et al.  The stimulation of calcium uptake into sarcoplasmic-reticulum vesicles from rat heart by adenosine 3',5'-phosphate-dependent protein kinase [proceedings]. , 1978, Biochemical Society Transactions.

[27]  R A Laskey,et al.  Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film , 1977, FEBS letters.

[28]  G. Semenza,et al.  A spectroscopic technique for measuring slow rotational diffusion of macromolecules. 1: Preparation and properties of a triplet probe. , 1976, Biochemistry.

[29]  A. Katz,et al.  The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3':5'-monophosphate-dependent protein kinase. , 1974, The Journal of biological chemistry.

[30]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[31]  A. Schwartz,et al.  Rate of Calcium Binding and Uptake in Normal Animal and Failing Human Cardiac Muscle: MEMBRANE VESICLES (RELAXING SYSTEM) AND MITOCHONDRIA , 1969, Circulation research.

[32]  O. H. Lowry,et al.  Protein measurement with the Folin phenol reagent. , 1951, The Journal of biological chemistry.