Spectroscopic ellipsometry and polarimetry for materials and systems analysis at the nanometer scale: state-of-the-art, potential, and perspectives

This paper discusses the fundamentals, applications, potential, limitations, and future perspectives of polarized light reflection techniques for the characterization of materials and related systems and devices at the nanoscale. These techniques include spectroscopic ellipsometry, polarimetry, and reflectance anisotropy. We give an overview of the various ellipsometry strategies for the measurement and analysis of nanometric films, metal nanoparticles and nanowires, semiconductor nanocrystals, and submicron periodic structures. We show that ellipsometry is capable of more than the determination of thickness and optical properties, and it can be exploited to gain information about process control, geometry factors, anisotropy, defects, and quantum confinement effects of nanostructures.

[1]  H. Deguchi,et al.  EXAFS study of doped ceria using multiple data set fit , 2005 .

[2]  F. Aldinger,et al.  Ce1−xY (Nd)xO2−δ nanopowders: potential materials for intermediate temperature solid oxide fuel cells , 2006 .

[3]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[4]  U. Kreibig The transition cluster-solid state in small gold particles , 1978 .

[5]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[6]  In‐situ spectroscopic ellipsometry: optimization of monitoring and closed‐loop‐control procedures , 2008 .

[7]  J. Foucher,et al.  Paving the way for multiple applications for the 3D-AFM technique in the semiconductor industry , 2008, SPIE Advanced Lithography.

[8]  W. Richter,et al.  Surface termination during GaN growth by metalorganic vapor phase epitaxy determined by ellipsometry , 2003 .

[9]  L. Martinu,et al.  Spectroellipsometric characterization of plasma-deposited Au/SiO2 nanocomposite films , 2000 .

[10]  P. Paulson,et al.  Spin-orbit splitting and critical point energy at Γ and L points of cubic CdTe nanoparticles: Effect of size and nonspherical shape , 2005 .

[11]  B. Gallas,et al.  Spectroscopic ellipsometry study of a self-organized Ge dot layer , 2003 .

[12]  Gero Decher,et al.  Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites , 1997 .

[13]  F. J. Grunthaner,et al.  Chemical and Electronic Structure of the SiO2/Si Interface , 1987 .

[14]  Tadaaki Nagao,et al.  INSTABILITY AND CHARGE DENSITY WAVE OF METALLIC QUANTUM CHAINS ON A SILICON SURFACE , 1999 .

[15]  Argiris Laskarakis,et al.  Mueller matrix spectroscopic ellipsometry: formulation and application , 2004 .

[16]  G. Bussetti,et al.  Infrared surface absorption in Si(111)2×1 observed with reflectance anisotropy spectroscopy , 2002 .

[17]  David E. Aspnes,et al.  Local‐field effects and effective‐medium theory: A microscopic perspective , 1982 .

[18]  M. Pileni,et al.  Ellipsometric identification of collective optical properties of silver nanocrystal arrays. , 2006, The Journal of chemical physics.

[19]  K. Robbie,et al.  Ex situ ellipsometric investigation of nanocolumns inclination angle of obliquely evaporated silicon thin films , 2005 .

[20]  Eric Teboul Innovations in ellipsometry facilitate thin-film analysis , 2008 .

[21]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[22]  Matthew F. Chisholm,et al.  Optical functions of chemical vapor deposited thin‐film silicon determined by spectroscopic ellipsometry , 1993 .

[23]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[24]  M. Losurdo Relationships among surface processing at the nanometer scale, nanostructure and optical properties of thin oxide films , 2004 .

[25]  D. Djurović,et al.  Self-propagating room temperature synthesis of nanopowders for solid oxide fuel cells (SOFC) , 2005 .

[26]  James N. Hilfiker,et al.  Survey of methods to characterize thin absorbing films with Spectroscopic Ellipsometry , 2008 .

[27]  Harland G. Tompkins,et al.  A User's Guide to Ellipsometry , 1992 .

[28]  A. C. Hall On the Use of Ellipsometry for Adsorption Measurements below Monolayer Coverage , 1966 .

[29]  Fred L. Terry,et al.  Erratum: Spectroscopic ellipsometry and reflectometry from gratings (Scatterometry) for critical dimension measurement and in situ, real-time process monitoring (Thin Solid Films (2004) 455, 456 (828-836) DOI: 10.1016/j.tsf.2004.04.010.) , 2004 .

[30]  G. Farca,et al.  Microsphere whispering-gallery-mode laser using HgTe quantum dots , 2004 .

[31]  C. Delerue,et al.  Effect of quantum confinement on the dielectric function of PbSe. , 2004, Physical review letters.

[32]  I. S. Nerbø,et al.  Characterization of nanostructured GaSb: comparison between large-area optical and local direct microscopic techniques. , 2008, Applied optics.

[33]  R. H. Fowler The Electron Theory of Metals. , 1930, Nature.

[34]  V. Antonucci,et al.  Preparation and sintering of Ce1−xGdxO2−x/2 nanopowders and their electrochemical and EPR characterization , 2004 .

[35]  Joshua M. Pearce,et al.  Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry , 2003 .

[36]  P. Drude Zur Elektronentheorie der Metalle , 1900 .

[37]  T. Gaylord,et al.  Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings , 1995 .

[38]  Iwao Matsuda,et al.  Anisotropy in conductance of a quasi-one-dimensional metallic surface state measured by a square micro-four-point probe method. , 2003, Physical review letters.

[39]  T. Girardeau,et al.  Quantitative modelling of the surface plasmon resonances of metal nanoclusters sandwiched between dielectric layers: the influence of nanocluster size, shape and organization , 2008, Nanotechnology.

[40]  F. J. Grunthaner,et al.  Chemical and electronic structure of the SiO2/Si interface , 1987 .

[41]  M. Chou,et al.  Quantum confinement and electronic properties of silicon nanowires. , 2004, Physical review letters.

[42]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[43]  G. Bruno,et al.  Plasma processing of the Si(0 0 1) surface for tuning SPR of Au/Si-based plasmonic nanostructures , 2006 .

[44]  Enric Garcia-Caurel,et al.  Spectroscopic Mueller polarimeter based on liquid crystal devices , 2004 .

[45]  G. Bruno,et al.  Nucleation and growth mode of the molecular beam epitaxy of GaN on 4H–SiC exploiting real time spectroscopic ellipsometry , 2005 .

[46]  George M. Whitesides,et al.  The structure of self-assembled monolayers of alkylsiloxanes on silicon: a comparison of results from ellipsometry and low-angle x-ray reflectivity , 1989 .

[47]  Pae C. Wu,et al.  Plasmonic gallium nanoparticles on polar semiconductors: interplay between nanoparticle wetting, localized surface plasmon dynamics, and interface charge. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[48]  J. Foucher,et al.  Comparison of spectroscopic Mueller polarimetry, standard scatterometry, and real space imaging techniques (SEM and 3D-AFM) for dimensional characterization of periodic structures , 2008, SPIE Advanced Lithography.

[49]  Alexander Eychmüller,et al.  Colloidally Prepared HgTe Nanocrystals with Strong Room‐Temperature Infrared Luminescence , 1999 .

[50]  W. E. Ford,et al.  Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. , 2004, Journal of the American Chemical Society.

[51]  M. Cohen,et al.  Ellipsometry in the Measurement of Surfaces and Thin Films , 1965 .

[52]  P. Lysaght,et al.  Identification of sub-band-gap absorption features at the HfO2∕Si(100) interface via spectroscopic ellipsometry , 2007 .

[53]  J. Carroll,et al.  Ellipsometry—LEED study of the adsorption of oxygen on (011) tungsten , 1969 .

[54]  Jorge O. Tocho,et al.  Size dependence of refractive index of gold nanoparticles , 2006 .

[55]  Y. Fujiwara,et al.  Semimetal to semiconductor transition in ErP islands grown on InP(001) due to quantum-size effects , 1999 .

[56]  Y. Kawazoe,et al.  Origin of the Blue Shift in Ultraviolet Absorption Spectra of Nanocrystalline CeO2−x Particles , 2000 .

[57]  Dielectric function of nanocrystalline silicon with few nanometers (<3 nm) grain size , 2003 .

[58]  Vladimir A. Ukraintsev A comprehensive test of optical scatterometry readiness for 65-nm technology production , 2006, SPIE Advanced Lithography.

[59]  Stergios Logothetidis,et al.  Structure-dependent electronic properties of nanocrystalline cerium oxide films , 2003 .

[60]  T. W. Kim,et al.  Coalescence and electron activation energy in CdTe/ZnTe nanostructures , 2002 .

[61]  B. Poelsema,et al.  Optical Characterization of Thin Colloidal Gold Films by Spectroscopic Ellipsometry , 2002 .

[62]  G. Jellison,et al.  Two-modulator generalized ellipsometry: theory. , 1997, Applied optics.

[63]  ArneAndersson LundUniversity Is Necessary and Sufficient# , 1996 .

[64]  S. Seal,et al.  Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles , 2006 .

[65]  T. Oates Real time spectroscopic ellipsometry of nanoparticle growth , 2006 .

[66]  Tatiana Novikova,et al.  Metrology of replicated diffractive optics with Mueller polarimetry in conical diffraction , 2007, SPIE Advanced Lithography.

[67]  N. Saucedo-Zeni,et al.  Optical anisotropies of metal clusters supported on a birefringent substrate , 2008 .

[68]  F. J. Himpsel,et al.  One-dimensional electronic states at surfaces , 2001 .

[69]  Hsu-ting Huang,et al.  Spectroscopic ellipsometry and reflectometry from gratings (Scatterometry) for critical dimension measurement and in situ, real-time process monitoring , 2004 .

[70]  Cardona,et al.  Temperature dependence of the dielectric function and interband critical points in silicon. , 1987, Physical review. B, Condensed matter.

[71]  M. Kovalenko,et al.  Nanocrystal-based microcavity light-emitting devices operating in the telecommunication wavelength range , 2005 .

[72]  A. Rogach,et al.  Investigation of factors affecting the photoluminescence of colloidally-prepared HgTe nanocrystals , 1999 .

[73]  Philippe Colomban,et al.  Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties , 2007 .

[74]  F. Bechstedt,et al.  REFLECTANCE ANISOTROPY OF GAAS(100) : THEORY AND EXPERIMENT , 1998 .

[75]  D. Aspnes Real‐time diagnostics for metalorganic vapor phase epitaxy , 2005 .

[76]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[77]  F. Bechstedt,et al.  Band structure and electron gas of in chains on Si(1 1 1) , 2005 .

[78]  S. Schubin,et al.  On the Electron Theory of Metals , 1934 .

[79]  Daniel J. C. Herr Metrology, Inspection, and Process Control for Microlithography XVII , 2003 .

[80]  Donald G. M. Anderson,et al.  Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix , 1994 .

[81]  T. Novikova,et al.  Application of Mueller polarimetry in conical diffraction for critical dimension measurements in microelectronics. , 2006, Applied optics.

[82]  J. Foucher,et al.  Accurate dimensional characterization of periodic structures by spectroscopic Mueller polarimetry , 2008, Lithography Asia.

[83]  Charles N. Archie,et al.  Scatterometry measurement precision and accuracy below 70 nm , 2003, SPIE Advanced Lithography.

[84]  Yia-Chung Chang,et al.  Efficient finite-element, Green's function approach for critical-dimension metrology of three-dimensional gratings on multilayer films. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[85]  Santos,et al.  Optical anisotropy in InAs/AlSb superlattices. , 1994, Physical review. B, Condensed matter.

[86]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[87]  H C Hemker,et al.  The adsorption of prothrombin to phosphatidylserine multilayers quantitated by ellipsometry. , 1983, The Journal of biological chemistry.

[88]  Wachter,et al.  Covalent insulator CeO2: Optical reflectivity measurements. , 1987, Physical review. B, Condensed matter.

[89]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[90]  D. Aspnes,et al.  Summary Abstract: Nondestructive analysis of native oxides and interfaces on Hg1−xCdxTe , 1984 .

[91]  J. P. Harbison,et al.  Application of reflectance difference spectroscopy to molecular‐beam epitaxy growth of GaAs and AlAs , 1988 .

[92]  E. Irene,et al.  Consistent refractive index parameters for ultrathin SiO2 films , 2000 .

[93]  Hwaung Lee,et al.  Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs , 2005 .

[94]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[95]  David E. Aspnes,et al.  Differential reflection spectroscopy of very thin surface films , 1971 .

[96]  Pae C. Wu,et al.  In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy , 2007 .