Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2

[1]  M. M. Allen SIMPLE CONDITIONS FOR GROWTH OF UNICELLULAR BLUE‐GREEN ALGAE ON PLATES 1, 2 , 1968, Journal of phycology.

[2]  A. Grossman,et al.  A small polypeptide triggers complete degradation of light‐harvesting phycobiliproteins in nutrient‐deprived cyanobacteria. , 1994, The EMBO journal.

[3]  G. Dismukes,et al.  Redirecting Reductant Flux into Hydrogen Production via Metabolic Engineering of Fermentative Carbon Metabolism in a Cyanobacterium , 2010, Applied and Environmental Microbiology.

[4]  J. Lakey,et al.  A Carboxyl-terminal Cys2/His2-type Zinc-finger Motif in DNA Primase Influences DNA Content inSynechococcus PCC 7942* , 1998, The Journal of Biological Chemistry.

[5]  C. Strayer,et al.  Efficient gene transfer in Synechococcus sp. strains PCC 7942 and PCC 6301 by interspecies conjugation and chromosomal recombination , 1994, Journal of bacteriology.

[6]  S. Atsumi,et al.  Cyanobacterial conversion of carbon dioxide to 2,3-butanediol , 2013, Proceedings of the National Academy of Sciences.

[7]  Tohru Natsume,et al.  [Human proteome]. , 2005, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[8]  Arthur R. Grossman,et al.  Tracking the Light Environment by Cyanobacteria and the Dynamic Nature of Light Harvesting* , 2001, The Journal of Biological Chemistry.

[9]  Eric A Welsh,et al.  Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light. , 2012, Journal of proteome research.

[10]  Ronald J Moore,et al.  Chemically etched open tubular and monolithic emitters for nanoelectrospray ionization mass spectrometry. , 2006, Analytical chemistry.

[11]  Xuefeng Lu,et al.  A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. , 2010, Biotechnology advances.

[12]  R. H. Berg,et al.  Unique Thylakoid Membrane Architecture of a Unicellular N2-Fixing Cyanobacterium Revealed by Electron Tomography1[W][OA] , 2010, Plant Physiology.

[13]  V. Eldholm,et al.  Natural genetic transformation: prevalence, mechanisms and function. , 2007, Research in microbiology.

[14]  J. Myers,et al.  NUTRITION AND GROWTH OF SEVERAL BLUE‐GREEN ALGAE , 1955 .

[15]  M. Kanehisa,et al.  Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization , 2007, Photosynthesis Research.

[16]  L. Sherman,et al.  Effect of iron deficiency and iron restoration on ultrastructure of Anacystis nidulans , 1983, Journal of bacteriology.

[17]  E. Flores,et al.  The cyanobacteria : molecular biology, genomics, and evolution , 2008 .

[18]  Peter Lindblad,et al.  Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology , 2010, Nucleic acids research.

[19]  O. Koksharova,et al.  Comparative proteomics of cell division mutants and wild-type of Synechococcus sp. strain PCC 7942. , 2007, Microbiology.

[20]  J. Bergquist,et al.  Production of Squalene in Synechocystis sp. PCC 6803 , 2014, PloS one.

[21]  C. Wolk,et al.  [83] Conjugal transfer of DNA to cyanobacteria , 1988 .

[22]  A. Muro-Pastor,et al.  Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120 , 1997, Journal of bacteriology.

[23]  Anne M. Ruffing Engineered cyanobacteria: Teaching an old bug new tricks , 2011, Bioengineered bugs.

[24]  D. Danforth,et al.  Unique Thylakoid Membrane Architecture of a Unicellular N 2 -Fixing Cyanobacterium Revealed , 2011 .

[25]  M. Mann,et al.  The Human Proteome , 2015 .

[26]  Xinyao Liu,et al.  Fatty acid production in genetically modified cyanobacteria , 2011, Proceedings of the National Academy of Sciences.

[27]  Himadri B. Pakrasi,et al.  Reduction of Photoautotrophic Productivity in the Cyanobacterium Synechocystis sp. Strain PCC 6803 by Phycobilisome Antenna Truncation , 2012, Applied and Environmental Microbiology.

[28]  C. Wolk,et al.  Conjugal transfer of DNA to cyanobacteria. , 1988, Methods in enzymology.

[29]  Peter Lindblad,et al.  Synthetic biology in cyanobacteria engineering and analyzing novel functions. , 2011, Methods in enzymology.

[30]  Ronald J Moore,et al.  Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses. , 2008, Analytical chemistry.

[31]  J. Raven,et al.  Interactions of photosynthesis with genome size and function , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Phillip C. Wright,et al.  Marine cyanobacteria—a prolific source of natural products , 2001 .

[33]  D. Bryant,et al.  Nitrate transport and not photoinhibition limits growth of the freshwater Cyanobacterium synechococcus species PCC 6301 at low temperature. , 1999, Plant physiology.

[34]  D. Bryant,et al.  Expression of genes in cyanobacteria: adaptation of endogenous plasmids as platforms for high-level gene expression in Synechococcus sp. PCC 7002. , 2011, Methods in molecular biology.

[35]  Ronald J. Moore,et al.  Reversed‐phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells , 2011, Proteomics.

[36]  P. Pevzner,et al.  Spectral probabilities and generating functions of tandem mass spectra: a strike against decoy databases. , 2008, Journal of proteome research.

[37]  Richard D. Smith,et al.  Proteome Analysis of Borrelia burgdorferi Response to Environmental Change , 2010, PloS one.

[38]  P. Thuriaux,et al.  Insertional mutagenesis by random cloning of antibiotic resistance genes into the genome of the cyanobacterium Synechocystis strain PCC 6803 , 1989, Journal of bacteriology.

[39]  Matthew E Monroe,et al.  Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome. , 2005, Journal of proteome research.

[40]  H. Lill,et al.  DNA-uptake in the naturally competent cyanobacterium, Synechocystis sp. PCC 6803 , 1995 .

[41]  J. Keasling,et al.  Microbial engineering for the production of advanced biofuels , 2012, Nature.

[42]  Joel L Cuello,et al.  Carbon Dioxide Mitigation using Thermophilic Cyanobacteria , 2007 .

[43]  Robert Verpoorte,et al.  Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering , 2011, Applied Microbiology and Biotechnology.

[44]  Tao Liu,et al.  Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics* , 2011, The Journal of Biological Chemistry.

[45]  Stefan Pieper,et al.  Liquid chromatography-mass spectrometry-based quantitative proteomics. , 2009, Methods in molecular biology.

[46]  James C Liao,et al.  Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. , 2011, Metabolic engineering.

[47]  L. Nedbal,et al.  Photobioreactor for cultivation and real‐time, in‐situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms , 2009 .

[48]  A. Melis,et al.  Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. , 2010, Metabolic engineering.