PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides

[1]  G. Frolenkov,et al.  Modification of cell wall polysaccharide guides cell division in Streptococcus mutans , 2021, Nature Chemical Biology.

[2]  Michael Snow,et al.  Interconnections between the Oral and Gut Microbiomes: Reversal of Microbial Dysbiosis and the Balance between Systemic Health and Disease , 2021, Microorganisms.

[3]  W. M. Hussein,et al.  Immunogenicity Assessment of Cell Wall Carbohydrates of Group A Streptococcus via Self-Adjuvanted Glyco-lipopeptides. , 2021, ACS infectious diseases.

[4]  F. Mancini,et al.  Rational Design of a Glycoconjugate Vaccine against Group A Streptococcus , 2020, International journal of molecular sciences.

[5]  L. Touqui,et al.  Type IIA Secreted Phospholipase A2 in Host Defense against Bacterial Infections. , 2020, Trends in immunology.

[6]  M. Inoue,et al.  Formulation of anomerization and protonation in d-glucosamine, based on 1H NMR. , 2020, Carbohydrate research.

[7]  C. Mayer,et al.  Phosphoglycerol-type wall and lipoteichoic acids are enantiomeric polymers differentiated by the stereospecific glycerophosphodiesterase GlpQ , 2020, The Journal of Biological Chemistry.

[8]  Qingyuan Du,et al.  Candidate , 2012, Juan Perón.

[9]  G. Gu,et al.  Group A Streptococcus Cell Wall Oligosaccharide-Streptococcal C5a Peptidase Conjugates as Effective Antibacterial Vaccines. , 2019, ACS infectious diseases.

[10]  R. Adamo,et al.  Glycoconjugate vaccines: current approaches towards faster vaccine design , 2019, Expert review of vaccines.

[11]  É. Boilard,et al.  Roles of secreted phospholipase A2 group IIA in inflammation and host defense. , 2019, Biochimica et biophysica acta. Molecular and cell biology of lipids.

[12]  Samantha L. van der Beek,et al.  Streptococcal dTDP‐L‐rhamnose biosynthesis enzymes: functional characterization and lead compound identification , 2019, Molecular microbiology.

[13]  A. McEwan,et al.  Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides , 2019, Nature Chemical Biology.

[14]  M. Federle,et al.  A Quorum Sensing-Regulated Protein Binds Cell Wall Components and Enhances Lysozyme Resistance in Streptococcus pyogenes , 2018, Journal of bacteriology.

[15]  V. Nizet,et al.  Streptococcal Lancefield polysaccharides are critical cell wall determinants for human Group IIA secreted phospholipase A2 to exert its bactericidal effects , 2018, bioRxiv.

[16]  X. Biarnés,et al.  Substrate Recognition and Specificity of Chitin Deacetylases and Related Family 4 Carbohydrate Esterases , 2018, International journal of molecular sciences.

[17]  B. Murray,et al.  Processing of the major autolysin of E. faecalis, AtlA, by the zinc-metalloprotease, GelE, impacts AtlA septal localization and cell separation , 2017, PloS one.

[18]  A. K. Criss,et al.  From bacterial killing to immune modulation: Recent insights into the functions of lysozyme , 2017, PLoS pathogens.

[19]  J. Chen,et al.  The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in Streptococcus pyogenes , 2017, The Journal of Biological Chemistry.

[20]  S. Walker,et al.  In vitro reconstitution demonstrates the cell wall ligase activity of LCP proteins. , 2017, Nature chemical biology.

[21]  V. Nizet,et al.  Group A Streptococcal M1 Protein Provides Resistance against the Antimicrobial Activity of Histones , 2017, Scientific Reports.

[22]  M. Gelb,et al.  Preparation of the Full Set of Recombinant Mouse- and Human-Secreted Phospholipases A2. , 2017, Methods in enzymology.

[23]  Michel-Yves Mistou,et al.  Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria , 2016, FEMS microbiology reviews.

[24]  S. Gautam,et al.  Wall teichoic acids prevent antibody binding to epitopes within the cell wall of Staphylococcus aureus. , 2016, ACS chemical biology.

[25]  Stevens Dl,et al.  Streptococcus pyogenes: Basic Biology to Clinical Manifestations , 2016 .

[26]  J. Weiss Molecular determinants of bacterial sensitivity and resistance to mammalian Group IIA phospholipase A2. , 2015, Biochimica et biophysica acta.

[27]  Samantha L. van der Beek,et al.  GacA is essential for Group A S treptococcus and defines a new class of monomeric dTDP‐4‐dehydrorhamnose reductases (RmlD) , 2015, Molecular microbiology.

[28]  C. Larive,et al.  (1)H and (15)N NMR Characterization of the Amine Groups of Heparan Sulfate Related Glucosamine Monosaccharides in Aqueous Solution. , 2015, Analytical chemistry.

[29]  Victor I Band,et al.  Mechanisms of Antimicrobial Peptide Resistance in Gram-Negative Bacteria , 2014, Antibiotics.

[30]  P. Howell,et al.  Structural Basis for the De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine in Gram-positive Bacteria* , 2014, The Journal of Biological Chemistry.

[31]  G. Cornelis,et al.  NMR-based Structural Analysis of the Complete Rough-type Lipopolysaccharide Isolated from Capnocytophaga canimorsus* , 2014, The Journal of Biological Chemistry.

[32]  S. Foster,et al.  Molecular basis for bacterial peptidoglycan recognition by LysM domains , 2014, Nature Communications.

[33]  V. Nizet,et al.  The classical lancefield antigen of group a Streptococcus is a virulence determinant with implications for vaccine design. , 2014, Cell host & microbe.

[34]  Guangshun Wang,et al.  Human Antimicrobial Peptides and Proteins , 2014, Pharmaceuticals.

[35]  L. Touqui,et al.  Secreted group IIA phospholipase A2 protects humans against the group B streptococcus: experimental and clinical evidence. , 2013, The Journal of infectious diseases.

[36]  V. Vié,et al.  Hen egg white lysozyme permeabilizes Escherichia coli outer and inner membranes. , 2013, Journal of agricultural and food chemistry.

[37]  Y. Le Breton,et al.  Genetic Manipulation of Streptococcus pyogenes (The Group A Streptococcus, GAS) , 2013, Current protocols in microbiology.

[38]  S. Walker,et al.  Wall teichoic acids of gram-positive bacteria. , 2013, Annual review of microbiology.

[39]  P. Howell,et al.  Functional characterization of Staphylococcus epidermidis IcaB, a de-N-acetylase important for biofilm formation. , 2013, Biochemistry.

[40]  E. Dennis,et al.  Assessing Phospholipase A2 Activity toward Cardiolipin by Mass Spectrometry , 2013, PloS one.

[41]  P. Howell,et al.  The Structure- and Metal-dependent Activity of Escherichia coli PgaB Provides Insight into the Partial De-N-acetylation of Poly-β-1,6-N-acetyl-d-glucosamine* , 2012, The Journal of Biological Chemistry.

[42]  M. Bernardini,et al.  Characterization of SfPgdA, a Shigella flexneri peptidoglycan deacetylase required for bacterial persistence within polymorphonuclear neutrophils. , 2012, Microbes and infection.

[43]  W. Vollmer,et al.  Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. , 2012, Microbial drug resistance.

[44]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[45]  A. Tomasz,et al.  Isolation and analysis of cell wall components from Streptococcus pneumoniae. , 2012, Analytical biochemistry.

[46]  L. Touqui,et al.  A Novel Bacterial Resistance Mechanism against Human Group IIA-Secreted Phospholipase A2: Role of Streptococcus pyogenes Sortase A , 2011, The Journal of Immunology.

[47]  Magnus Lundborg,et al.  Structural analysis of glycans by NMR chemical shift prediction. , 2011, Analytical chemistry.

[48]  R. Rappuoli,et al.  Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate. , 2010, Vaccine.

[49]  M. Federle,et al.  A novel double‐tryptophan peptide pheromone controls competence in Streptococcus spp. via an Rgg regulator , 2010, Molecular microbiology.

[50]  R. Maier,et al.  Peptidoglycan Deacetylation in Helicobacter pylori Contributes to Bacterial Survival by Mitigating Host Immune Responses , 2010, Infection and Immunity.

[51]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[52]  Kevin Cowtan,et al.  Recent developments in classical density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[53]  V. Nizet,et al.  The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae. , 2010, Microbiology.

[54]  H. Izawa,et al.  Enzymatic alpha-glucosaminylation of maltooligosaccharides catalyzed by phosphorylase. , 2008, Carbohydrate research.

[55]  Mark T. Gladwin,et al.  The nitrate–nitrite–nitric oxide pathway in physiology and therapeutics , 2008, Nature Reviews Drug Discovery.

[56]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[57]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[58]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[59]  A. Peschel,et al.  Molecular Basis of Resistance to Muramidase and Cationic Antimicrobial Peptide Activity of Lysozyme in Staphylococci , 2007, PLoS pathogens.

[60]  M. Prevost,et al.  A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system , 2007, Proceedings of the National Academy of Sciences.

[61]  M. Lecerf,et al.  Functional Analysis of AtlA, the Major N-Acetylglucosaminidase of Enterococcus faecalis , 2006, Journal of bacteriology.

[62]  M. Gladwin,et al.  Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis , 2006, Nature chemical biology.

[63]  Kevin Cowtan,et al.  The Buccaneer software for automated model building. 1. Tracing protein chains. , 2006, Acta crystallographica. Section D, Biological crystallography.

[64]  M. Parseghian,et al.  Beyond the walls of the nucleus: the role of histones in cellular signaling and innate immunity. , 2006, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[65]  Vladislav Yu Orekhov,et al.  Removal of a time barrier for high-resolution multidimensional NMR spectroscopy , 2006, Nature Methods.

[66]  W. Nauseef,et al.  Effect of d-Alanylation of (Lipo)Teichoic Acids of Staphylococcus aureus on Host Secretory Phospholipase A2 Action before and after Phagocytosis by Human Neutrophils1 , 2006, The Journal of Immunology.

[67]  S. Meroueh,et al.  Three-dimensional structure of the bacterial cell wall peptidoglycan. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[68]  J. Zabriskie,et al.  Group A streptococcus (GAS) carbohydrate as an immunogen for protection against GAS infection. , 2006, The Journal of infectious diseases.

[69]  A. W. Schüttelkopf,et al.  Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[70]  T. Nevalainen,et al.  Roles of Group IIA Phospholipase A2 and Complement in Killing of Bacteria by Acute Phase Serum , 2005, Scandinavian journal of immunology.

[71]  Vladislav Yu Orekhov,et al.  High-resolution four-dimensional 1H-13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. , 2005, Journal of the American Chemical Society.

[72]  A. Weintraub,et al.  Structural analysis of the O-antigen polysaccharide from Escherichia coli O152. , 2005, Carbohydrate research.

[73]  Jeff A. Cole,et al.  Nitrate, bacteria and human health , 2004, Nature Reviews Microbiology.

[74]  Vladislav Yu Orekhov,et al.  Optimizing resolution in multidimensional NMR by three-way decomposition , 2003, Journal of biomolecular NMR.

[75]  M. Gelb,et al.  Role of Charge Properties of Bacterial Envelope in Bactericidal Action of Human Group IIA Phospholipase A2against Staphylococcus aureus* , 2002, The Journal of Biological Chemistry.

[76]  D. Karamata,et al.  tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168. , 2002, Microbiology.

[77]  A. Tomasz,et al.  The pgdA Gene Encodes for a PeptidoglycanN-Acetylglucosamine Deacetylase in Streptococcus pneumoniae * , 2000, The Journal of Biological Chemistry.

[78]  D. Wilton,et al.  Inhibition of secreted phospholipases A2 by annexin V. Competition for anionic phospholipid interfaces allows an assessment of the relative interfacial affinities of secreted phospholipases A2. , 1998, Biochimica et biophysica acta.

[79]  P. Jansson,et al.  Synthesis, NMR spectroscopy and conformational studies of the four anomeric methyl glycosides of the trisaccharide D-Glcp-(1→3)-[D-Glcp-(1→4)]-α-D-Glcp , 1998 .

[80]  Wagner,et al.  Gradient-Selected NOESY-A Fourfold Reduction of the Measurement Time for the NOESY Experiment , 1996, Journal of magnetic resonance. Series A.

[81]  D. Crothers,et al.  Three-Dimensional Triple-Resonance 1H, 13C, 31P Experiment: Sequential Through-Bond Correlation of Ribose Protons and Intervening Phosphorus along the RNA Oligonucleotide Backbone , 1994 .

[82]  Wolfgang Bermel,et al.  Gradient selection in inverse heteronuclear correlation spectroscopy , 1993 .

[83]  G. W. Kellogg Proton-detected hetero-TOCSY experiments with application to nucleic acids , 1992 .

[84]  P. Jansson,et al.  Computer-assisted structural analysis of polysaccharides with an extended version of CASPER using 1H- and 13C-n.m.r. data. , 1989, Carbohydrate research.

[85]  N. Rama Krishna,et al.  Characterization of the group A streptococcal polysaccharide by two-dimensional 1H-nuclear-magnetic-resonance spectroscopy. , 1986, Carbohydrate research.

[86]  P. Albersheim,et al.  Isolation and characterization of plant cell walls and cell wall components , 1986 .

[87]  N. Kojima,et al.  Structural studies on the linkage unit of ribitol teichoic acid of Lactobacillus plantarum. , 1985, European journal of biochemistry.

[88]  T. Kindt,et al.  Structure of the streptococcal groups A, A-variant and C carbohydrates. , 1978, Immunochemistry.

[89]  Y. Knirel,et al.  Selective cleavage of glycosidic linkages: studies with the model compound benzyl 2-acetamido-2-deoxy-6-O-α-D-mannopyranosyl-α-D-glucopyranoside , 1973 .

[90]  S. Svensson,et al.  Deamination of Methyl 2-Amino-2-deoxy-alpha-and -beta-D-glycopyranosides. , 1973 .

[91]  N. Sharon,et al.  The binding of oligosaccharides containing N-acetylglucosamine and N-acetylmuramic acid to lysozyme. The specificity of binding subsites. , 1967, The Journal of biological chemistry.

[92]  M. Mccarty,et al.  VARIATION IN THE GROUP-SPECIFIC CARBOHYDRATE OF GROUP A STREPTOCOCCI , 1955, The Journal of experimental medicine.